688 research outputs found

    Linear polarization sensitivity of SeGA detectors

    Get PDF
    Parity is a key observable in nuclear spectroscopy. Linear polarization measurements of Îł\gamma-rays are a probe to access the parities of energy levels. Utilizing the segmentation of detectors in the Segmented Germanium Array (SeGA) at the NSCL and analyzing the positions of interaction therein allows the detectors to be used as Compton polarimeters. Unlike other segmented detectors, SeGA detectors are irradiated from the side to utilize the transversal segmentation for better Doppler corrections. Sensitivity in such an orientation has previously been untested. A linear polarization sensitivity Q≈0.14Q \approx 0.14 has been measured in the 350-keV energy range for SeGA detectors using α\alpha-Îł\gamma correlations from a \nuc{249}{Cf} source.Comment: 7 pages, 9 figure

    The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy's Central Black Hole: A Paradox of Youth

    Get PDF
    We have obtained the first detection of spectral absorption lines in one of the high-velocity stars in the vicinity of the Galaxy's central supermassive black hole. Both Brgamma (2.1661 micron) and He I (2.1126 micron) are seen in absorption in S0-2 with equivalent widths (2.8+-0.3 Ang & 1.7+-0.4 Ang) and an inferred stellar rotational velocity (220+-40 km/s) that are consistent with that of an O8-B0 dwarf, which suggests that it is a massive (~15 Msun), young (<10 Myr) main sequence star. This presents a major challenge to star formation theories, given the strong tidal forces that prevail over all distances reached by S0-2 in its current orbit (130 - 1900 AU) and the difficulty in migrating this star inward during its lifetime from further out where tidal forces should no longer preclude star formation. The radial velocity measurements (-510+-40 km/s) and our reported proper motions for S0-2 strongly constrain its orbit, providing a direct measure of the black hole mass of 4.1(+-0.6)x10^6(Ro/8kpc)^3 Msun. The Keplerian orbit parameters have uncertainities that are reduced by a factor of 2-3 compared to previously reported values and include, for the first time, an independent solution for the dynamical center; this location, while consistent with the nominal infrared position of Sgr A*, is localized to a factor of 5 more precisely (+-2 milli-arcsec). Furthermore, the ambiguity in the inclination of the orbit is resolved with the addition of the radial velocity measurement, indicating that the star is behind the black hole at the time of closest approach and counter-revolving against the Galaxy. With further radial velocity measurements in the next few years, the orbit of S0-2 will provide the most robust estimate of the distance to the Galactic Center.Comment: 14 pages, Latex, Accepted for Publication in ApJ Letter

    Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon

    Full text link
    This paper deals with the dead-water phenomenon, which occurs when a ship sails in a stratified fluid, and experiences an important drag due to waves below the surface. More generally, we study the generation of internal waves by a disturbance moving at constant speed on top of two layers of fluids of different densities. Starting from the full Euler equations, we present several nonlinear asymptotic models, in the long wave regime. These models are rigorously justified by consistency or convergence results. A careful theoretical and numerical analysis is then provided, in order to predict the behavior of the flow and in which situations the dead-water effect appears.Comment: To appear in Nonlinearit

    Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory

    Get PDF
    Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us to comprehend the architecture of extrasolar planetary systems. Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have provided a valuable dataset for the study of debris discs gas and dust composition. This paper is part of a series of papers devoted to the study of Herschel PACS observations of young stellar associations. Aims. This work aims at studying the properties of discs in the Beta Pictoris Moving Group (BPMG) through far-IR PACS observations of dust and gas. Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100 and 160 microns of 19 BPMG members, together with spectroscopic observations of four of them. Spectroscopic observations were centred at 63.18 microns and 157 microns, aiming to detect [OI] and [CII] emission. We incorporated the new far-IR observations in the SED of BPMG members and fitted modified blackbody models to better characterise the dust content. Results. We have detected far-IR excess emission toward nine BPMG members, including the first detection of an IR excess toward HD 29391.The star HD 172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding the short list of debris discs with a gas detection. No debris disc in BPMG is detected in both [OI] and [CII]. The discs show dust temperatures in the range 55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii from blackbody models in the range 3 to 82 AU. All the objects with a gas detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table

    Multiwavelength studies of the gas and dust disc of IRAS 04158+2805

    Get PDF
    We present a study of the circumstellar environment of IRAS 04158+2805 based on multi-wavelength observations and models. Images in the optical and near-infrared, a polarisation map in the optical, and mid-infrared spectra were obtained with VLT-FORS1, CFHT-IR, and Spitzer-IRS. Additionally we used an X-ray spectrum observed with Chandra. We interpret the observations in terms of a central star surrounded by an axisymmetric circumstellar disc, but without an envelope, to test the validity of this simple geometry. We estimate the structural properties of the disc and its gas and dust content. We modelled the dust disc with a 3D continuum radiative transfer code, MCFOST, based on a Monte-Carlo method that provides synthetic scattered light images and polarisation maps, as well as spectral energy distributions. We find that the disc images and spectral energy distribution narrowly constrain many of the disc model parameters, such as a total dust mass of 1.0-1.75x10^-4 sollar masses and an inclination of 62-63 degrees. The maximum grain size required to fit all available data is of the order of 1.6-2.8 microns although the upper end of this range is loosely constrained. The observed optical polarisation map is reproduced well by the same disc model, suggesting that the geometry we find is adequate and the optical properties are representative of the visible dust content. We compare the inferred dust column density to the gas column density derived from the X-ray spectrum and find a gas-to-dust ratio along the line of sight that is consistent with the ISM value. To our knowledge, this measurement is the first to directly compare dust and gas column densities in a protoplanetary disc.Comment: 8 figures, 11 pages, accepted by A&

    High-spin states with seniority v=4,4,6 in 119-126Sn

    Full text link
    The 119-126Sn nuclei have been produced as fission fragments in two reactions induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85 MeV. Their level schemes have been built from gamma rays detected using the Euroball array. High-spin states located above the long-lived isomeric states of the even- and odd-A 120-126Sn nuclei have been identified. Moreover isomeric states lying around 4.5 MeV have been established in 120,122,124,126Sn from the delayed coincidences between the fission fragment detector SAPhIR and the Euroball array. The states located above 3-MeV excitation energy are ascribed to several broken pairs of neutrons occupying the nu h11/2 orbit. The maximum value of angular momentum available in such a high-j shell, i.e. for mid-occupation and the breaking of the three neutron pairs, has been identified. This process is observed for the first time in spherical nuclei.Comment: 20 pages, 22 figures, 12 tables, accepted for publication in Physical Review

    Vanishing spin alignment : experimental indication of triaxial 28Si+28Si\bf ^{28}Si + {^{28}Si} nuclear molecule

    Full text link
    Fragment-fragment-Îł\gamma coincidences have been measured for 28Si+28Si\rm ^{28}Si + {^{28}Si} at an energy corresponding to the population of a conjectured resonance in 56^{56}Ni. Fragment angular distributions as well as Îł\gamma-ray angular correlations indicate that the spin orientations of the outgoing fragments are perpendicular to the orbital angular momentum. This differs from the 24Mg+24Mg\rm ^{24}Mg+{^{24}Mg} and the 12C+12C\rm ^{12}C+{^{12}C} resonances, and suggests two oblate 28Si\rm ^{28}Si nuclei interacting in an equator-to-equator molecular configuration.Comment: 14 pages standard REVTeX file, 3 ps Figures -- Accepted for publication in Physical Review C (Rapid Communication

    Search for Fingerprints of Tetrahedral Symmetry in 156Gd^{156}Gd

    Full text link
    Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in 156Gd^{156}Gd. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in 156Gd^{156}Gd.Comment: presented by Q.T. Doan at XLII Zakopane School of Physics: Breaking Frontiers: Submicron Structures in Physics and Biology, May 2008. 5 pages, minor corrections. To be published in the proceeding

    Rotational Velocities of Individual Components in Very Low Mass Binaries

    Get PDF
    We present rotational velocities for individual components of 11 very low mass (VLM) binaries with spectral types between M7 and L7.5. These results are based on observations taken with the near-infrared spectrograph, NIRSPEC, and the Keck II laser guide star adaptive optics system. We find that the observed sources tend to be rapid rotators (v sin i > 10 km s^(–1)), consistent with previous seeing-limited measurements of VLM objects. The two sources with the largest v sin i, LP 349–25B and HD 130948C, are rotating at ~30% of their break-up speed, and are among the most rapidly rotating VLM objects known. Furthermore, five binary systems, all with orbital semimajor axes ≟3.5 AU, have component v sin i values that differ by greater than 3σ. To bring the binary components with discrepant rotational velocities into agreement would require the rotational axes to be inclined with respect to each other, and that at least one component is inclined with respect to the orbital plane. Alternatively, each component could be rotating at a different rate, even though they have similar spectral types. Both differing rotational velocities and inclinations have implications for binary star formation and evolution. We also investigate possible dynamical evolution in the triple system HD 130948A–BC. The close binary brown dwarfs B and C have significantly different v sin i values. We demonstrate that components B and C could have been torqued into misalignment by the primary star, A, via orbital precession. Such a scenario can also be applied to another triple system in our sample, GJ 569A–Bab. Interactions such as these may play an important role in the dynamical evolution of VLM binaries. Finally, we note that two of the binaries with large differences in component v sin i, LP 349–25AB and 2MASS 0746+20AB, are also known radio sources
    • 

    corecore