706 research outputs found

    Searching for coherent pulsations in ultraluminous X-ray sources

    Full text link
    Luminosities of ultraluminous X-ray sources (ULXs) are uncomfortably large if compared to the Eddington limit for isotropic accretion onto stellar-mass object. Most often either supercritical accretion onto stellar mass black hole or accretion onto intermediate mass black holes is invoked the high luminosities of ULXs. However, the recent discovery of coherent pulsations from M82 ULX with NuSTAR showed that another scenario implying accretion onto a magnetized neutron star is possible for ULXs. Motivated by this discovery, we re-visited the available XMM-Newton archival observations of several bright ULXs with a targeted search for pulsations to check whether accreting neutron stars might power other ULXs as well. We have found no evidence for significant coherent pulsations in any of the sources including the M82 ULX. We provide upper limits for the amplitude of possibly undetected pulsed signal for the sources in the sample.Comment: 2 pages, 1 figure, submitted to A&

    Supergiant, fast, but not so transient 4U 1907+09

    Full text link
    We have investigated the dipping activity observed in the high-mass X-ray binary 4U 1907+09 and shown that the source continues to pulsate in the "off" state, noting that the transition between the "on" and "off" states may be either dip-like or flare-like. This behavior may be explained in the framework of the "gated accretion" scenario proposed to explain the flares in supergiant fast X-ray transients (SFXTs). We conclude that 4U 1907+09 might prove to be a missing link between the SFXTs and ordinary accreting pulsars.Comment: 4 pages 5 figures, accepted in A&

    Population of the Galactic X-ray binaries and eRosita

    Full text link
    The population of the Galactic X-ray binaries has been mostly probed with moderately sensitive hard X-ray surveys so far. The eRosita mission will provide, for the first time a sensitive all-sky X-ray survey in the 2-10 keV energy range, where the X-ray binaries emit most of the flux and discover the still unobserved low-luminosity population of these objects. In this paper, we briefly review the current constraints for the X-ray luminosity functions of high- and low-mass X-ray binaries and present our own analysis based the INTEGRAL 9-year Galactic survey, which yields improved constraints. Based on these results, we estimate the number of new XRBs to be detected in the eRosita all-sky surveyComment: accepted for publication in A&

    Ten years of INTEGRAL observations of the hard X-ray emission from SGR 1900+14

    Get PDF
    We exploited the high sensitivity of the INTEGRAL IBIS/ISGRI instrument to study the persistent hard X-ray emission of the soft gamma-ray repeater SGR 1900+14, based on ~11.6 Ms of archival data. The 22-150 keV INTEGRAL spectrum can be well fit by a power law with photon index 1.9 +/- 0.3 and flux F_x = (1.11 +/- 0.17)E-11 erg/cm^2/s (20-100 keV). A comparison with the 20-100 keV flux measured in 1997 with BeppoSAX, and possibly associated with SGR 1900+14, shows a luminosity decrease by a factor of ~5. The slope of the power law above 20 keV is consistent within the uncertainties with that of SGR 1806-20, the other persistent soft gamma-ray repeater for which a hard X-ray emission extending up to 150 keV has been reported.Comment: Accepted for publication in Astronomy & Astrophysics. 4 page

    The magnetospheric radius of an inclined rotator in the magnetically threaded disk model

    Get PDF
    The estimate of the magnetospheric radius in a disk-fed neutron star X-ray binary is a long standing problem in high energy Astrophysics. We review the magnetospheric radius calculations in the so-called magnetically threaded disk model, comparing the simplified approach originally proposed by Ghosh & Lamb (1979) with the revised version proposed by Wang (1987), Wang (1995), and Wang (1997). We show that for a given set of fixed parameters (assuming also a comparable screening factor of the neutron star magnetic field by the currents induced on the disk surface) the revised magnetically threaded disk model predicts a magnetospheric radius that is significantly smaller than that derived from the Ghosh & Lamb (1979) treatment. For a fixed value of the neutron star magnetic field and a wide range of mass accretion rates, the inclusion of a large inclination angle between the neutron star rotation and magnetic field axes (χ\chi≳\gtrsim60 deg) leads to a further decrease of the magnetospheric radius. To illustrate the relevance of these calculations, we consider, as an example, the case of the transitional pulsars. During the so-called "high mode" of their sub-luminous accretion disk state, these sources have shown X-ray pulsations interpreted as due to accretion at an unprecedented low luminosity level compared to other neutron stars in X-ray binaries. In the context of the magnetic threaded disk model, we show that accretion at luminosities of ∼\sim1033^{33} erg s−1^{-1} (and thus accretion-driven X-ray pulsations) can be more easily explained when the prescription of the magnetospheric radius provided by Wang (1997) is used. This avoids the need of invoking very strong propeller outflows in the transitional pulsars, as proposed in other literature works.Comment: Accepted for publication in A&

    Exploring the role of X-ray reprocessing and irradiation in the anomalous bright optical outbursts of A0538-66

    Get PDF
    In 1981, the Be/X-ray binary (Be/XRB) A0538-66 showed outbursts characterized by high peak luminosities in the X-ray and optical bands. The optical outbursts were qualitatively explained as X-ray reprocessing in a gas cloud surrounding the binary system. Since then, further important information about A0538-66 have been obtained, and sophisticated photoionization codes have been developed to calculate the radiation emerging from a gas nebula illuminated by a central X-ray source. In the light of the new information and tools available, we studied again the enhanced optical emission displayed by A0538-66 to understand the mechanisms responsible for these unique events among the class of Be/XRBs. We performed about 10^5 simulations of a gas envelope photoionized by an X-ray source. We assumed for the shape of the gas cloud either a sphere or a circumstellar disc observed edge-on. We studied the effects of varying the main properties of the envelope and the influence of different input X-ray spectra on the optical/UV emission emerging from the photoionized cloud. We compared the computed spectra with the IUE spectrum and photometric UBV measurements obtained during the outburst of 29 April 1981. We also explored the role played by the X-ray heating of the surface of the donor star irradiated by the X-ray emission of the neutron star (NS). We found that reprocessing in a spherical cloud with a shallow radial density distribution can reproduce the optical/UV emission. To our knowledge, this configuration has never been observed either in A0538-66 during other epochs or in other Be/XRBs. We found, contrary to the case of most other Be/XRBs, that the optical/UV radiation produced by the X-ray heating of the surface of the donor star irradiated by the NS is non-negligible, due to the particular orbital parameters of this system that bring the NS very close to its companion.Comment: Accepted for publication in Astronomy & Astrophysics. Abstract abridged to meet arXiv requirement

    Swift monitoring of IGR J16418-4532

    Full text link
    We report on the Swift observations of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, which has an orbital period of ~3.7 d. Our monitoring, for a total of ~43 ks, spans over three orbits and represents the most intense and complete sampling along the orbital period of the light curve of this source. If one assumes a circular orbit, the X-ray emission from this source can be explained by accretion from a spherically symmetric clumpy wind from a blue supergiant, composed of clumps with different masses, ranging from ~5x10^16 g to 10^21g.Comment: 4 pages; Proceedings, 5th International Symposium on High-Energy Gamma-Ray Astronomy, (Gamma2012) Heidelberg, Germany, July 9-13th, 201

    XMM-Newton observation of the interacting galaxies NGC1512 and NGC1510

    Full text link
    The galaxy NGC1512 is interacting with the smaller galaxy NGC1510 and shows a peculiar morphology, characterised by two extended arms immersed in an HI disc whose size is about four times larger than the optical diameter of NGC1512. For the first time we performed a deep X-ray observation of the galaxies NGC1512 and NGC1510 with XMM-Newton to gain information on the population of X-ray sources and diffuse emission in a system of interacting galaxies. We identified and classified the sources detected in the XMM-Newton field of view by means of spectral analysis, hardness-ratios calculated with a Bayesian method, X-ray variability, and cross-correlations with catalogues in optical, infrared, and radio wavelengths. We also made use of archival Swift (X-ray) and Australia Telescope Compact Array (radio) data to better constrain the nature of the sources detected with XMM-Newton. We detected 106 sources in the energy range of 0.2-12 keV, out of which 15 are located within the D_25 regions of NGC1512 and NGC1510 and at least six sources coincide with the extended arms. We identified and classified six background objects and six foreground stars. We discussed the nature of a source within the D_25 ellipse of NGC1512, whose properties indicate a quasi-stellar object or an intermediate ultra-luminous X-ray source. Taking into account the contribution of low-mass X-ray binaries and active galactic nuclei, the number of high-mass X-ray binaries detected within the D_25 region of NGC1512 is consistent with the star formation rate obtained in previous works based on radio, infrared optical, and UV wavelengths. We detected diffuse X-ray emission from the interior region of NGC1512 with a plasma temperature of kT=0.68(0.31-0.87) keV and a 0.3-10 keV X-ray luminosity of 1.3E38 erg/s, after correcting for unresolved discrete sources.Comment: Accepted for publication in Astronomy and Astrophysics. 20 pages. Appendix B will be published electronically onl
    • …
    corecore