The estimate of the magnetospheric radius in a disk-fed neutron star X-ray
binary is a long standing problem in high energy Astrophysics. We review the
magnetospheric radius calculations in the so-called magnetically threaded disk
model, comparing the simplified approach originally proposed by Ghosh & Lamb
(1979) with the revised version proposed by Wang (1987), Wang (1995), and Wang
(1997). We show that for a given set of fixed parameters (assuming also a
comparable screening factor of the neutron star magnetic field by the currents
induced on the disk surface) the revised magnetically threaded disk model
predicts a magnetospheric radius that is significantly smaller than that
derived from the Ghosh & Lamb (1979) treatment. For a fixed value of the
neutron star magnetic field and a wide range of mass accretion rates, the
inclusion of a large inclination angle between the neutron star rotation and
magnetic field axes (χ≳60 deg) leads to a further decrease of the
magnetospheric radius. To illustrate the relevance of these calculations, we
consider, as an example, the case of the transitional pulsars. During the
so-called "high mode" of their sub-luminous accretion disk state, these sources
have shown X-ray pulsations interpreted as due to accretion at an unprecedented
low luminosity level compared to other neutron stars in X-ray binaries. In the
context of the magnetic threaded disk model, we show that accretion at
luminosities of ∼1033 erg s−1 (and thus accretion-driven X-ray
pulsations) can be more easily explained when the prescription of the
magnetospheric radius provided by Wang (1997) is used. This avoids the need of
invoking very strong propeller outflows in the transitional pulsars, as
proposed in other literature works.Comment: Accepted for publication in A&