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ABSTRACT

The estimate of the magnetospheric radius in a disk-fed neutron star X-ray binary is a long standing problem in high energy astro-
physics. We have reviewed the magnetospheric radius calculations in the so-called magnetically threaded disk model, comparing the
simplified approach originally proposed by Ghosh & Lamb (1979, ApJ, 232, 259) with the revised version proposed by Wang (1987,
A&A, 183, 257), Wang (1995, ApJ, 449, L153), and Wang (1997, ApJ, 475, L135). We show that for a given set of fixed parameters
(assuming also a comparable screening factor of the neutron star magnetic field by the currents induced on the disk surface) the revised
magnetically threaded disk model predicts a magnetospheric radius that is significantly smaller than that derived from the Ghosh &
Lamb (1979) treatment. For a fixed value of the neutron star magnetic field and a wide range of mass accretion rates, the inclusion of
a large inclination angle between the neutron star rotation and magnetic field axes (χ& 60 deg) leads to a further decrease of the mag-
netospheric radius. To illustrate the relevance of these calculations, we consider, as an example, the case of the transitional pulsars.
During the so-called high mode of their sub-luminous accretion disk state, these sources have shown X-ray pulsations interpreted as
due to accretion at an unprecedented low luminosity level compared to other neutron stars in X-ray binaries. In the context of the
magnetic threaded disk model, we show that accretion at luminosities of ∼1033 erg s−1 (and thus accretion-driven X-ray pulsations)
can be more easily explained when the prescription of the magnetospheric radius provided by Wang (1997) is used. This avoids the
need to invoke very strong propeller outflows in the transitional pulsars, as proposed in other literature works.

Key words. stars: neutron – X-rays: binaries

1. Introduction

In disk-fed X-ray binaries hosting neutron stars (NS), the
determination of the so-called magnetospheric radius is a
long-standing problem that has been faced through different
theoretical approaches and numerical simulations (see, e.g., Lai
2014, for a recent review). Different models aimed at deter-
mining self-consistently the magnetospheric radius have been
challenged by our relatively poor knowledge of parameters
related to the micro-physics of the disk matter (magnetic dif-
fusivity and turbulence among others), as well as its com-
plex coupling with the NS magnetic field (see, e.g., Frank et al.
2002). Numerical simulations have highlighted some aspects of
the disk-magnetosphere interaction (see, e.g., Romanova et al.
2014; Parfrey et al. 2017; Parfrey & Tchekhovskoy 2017). How-
ever, from these simulations it is often difficult to derive sim-
ple prescriptions that can be used to interpret X-ray data of
accreting NSs in X-ray binaries over a wide range of lumi-
nosity (1033–1038 erg s−1; see, e.g., Muñoz-Darias et al. 2014;
Walter et al. 2015). The position of the magnetospheric radius
is, indeed, used as a proxy to predict whether accretion can
take place in these systems, and accretion powered X-ray pulsa-
tions should be expected as a consequence of the channelling of
the accreted material toward the magnetic poles of the compact

object (see, e.g., Bhattacharya & van den Heuvel 1991; Ghosh
2007; Patruno & Watts 2012).

Although many different approaches have been pro-
posed to estimate the magnetospheric radius (see, e.g.,
Kluźniak & Rappaport 2007; D’Angelo & Spruit 2010, and ref-
erences therein), we limit this paper to one of the most fre-
quently used analytical approximation that is available within
the so-called magnetically threaded disk model as originally
proposed by Ghosh & Lamb (1979; hereafter GL79) and later
revised by Wang (1987; hereafter WG87) and Wang (1995; here-
after WG95). The basic assumptions concerning the coupling
between the NS magnetic field and the disk are similar in GL79,
WG87, and WG95, but the dependence of the magnetospheric
radius on the different parameters is significantly different, as
also discussed previously in Bozzo et al. (2009; hereafter B09).

In this work, we have focussed on the method used in WG87
and W95 to derive the magnetospheric radius, including the
extension to the case of an oblique rotator, as presented later
by Wang (1997; hereafter WG97). For comparable values of a
number of the threaded disk model parameters (including the
screening factor of the neutron star magnetic field by the currents
induced on the disk surface), we highlight here that the magne-
tospheric radius predicted by WG97 is significantly smaller than
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that expected from the original GL79 treatment. The reduction of
the magnetospheric radius is more pronounced toward low mass
accretion rates and for higher inclination angles between the
NS magnetic and rotational axis (the effect of the high inclina-
tion angle is more effective toward higher mass accretion rates).
These findings are applied, as an example, to the case of the so-
called transitional millisecond pulsars, which display coherent
X-ray pulsations interpreted as due to accretion at luminosities
that are ∼100 times lower than those of other NS X-ray binaries.

2. Magnetospheric radius in the magnetic threaded
disk model

2.1. Aligned rotator case

Let us consider the case of a disk-fed X-ray binary in which the
NS is an aligned rotator (i.e., with aligned magnetic and spin
axes, which are both perpendicular to the plane of the disk). If
the disk is not completely diamagnetic and the accreting plasma
has a non-zero resistivity, then the NS magnetic field lines can
penetrate inside the disk (the so-called magnetic threaded disk
model). These magnetic field lines regulate the accretion process
and the exchange of angular momentum between the NS and the
disk. The momentum exchanged through the magnetic field lines
penetrating the disk at radii smaller than the corotation radius1

Rc = 1.7× 106M1.4P2/3
−3 cm (1)

contributes to spin up the NS, whereas that exchanged through
lines penetrating the disk beyond Rc acts to reduce the star spin.
We note that we scaled the NS mass, M, in units of 1.4 M� and
its spin period, Pspin, in units of 1 ms. Assuming that the NS has
a dipolar magnetic field, we can write the z-component of the
field close to the disk surface as

Bz(R) =−η
µ

R3 , (2)

where µ is the NS magnetic moment, η∼ 0.2 is a screening
parameter representing the effect of currents induced on the disk
surface, and R is the distance from the NS center. A toroidal
magnetic field Bφ is generated from Bz due to the differential
rotation between the star and the disk. The shear amplification
of the toroidal field occurs on a timescale τ∼ |γ(ΩNS −ΩK)|−1,
where γ∼ 1 is a parameter describing the steepness of the verti-
cal transition across the disk height, h, between the rigid corota-
tion of the magnetic field line with the star and the Keplerian
rotation inside the disk. Due to the finite conductivity of the
disk material, the magnetic field lines distorted beyond a certain
degree can reconnect above and below the plane of the disk on
a timescale τphi ∼ h/(ξvAφ), where ξvAφ is the reconnection rate
expressed in terms of the local Alfven velocity. The numerical
factor ξ is expected to be ξ ' 0.01−0.1 if the main dissipation is
the annihilation of the poloidal field near the disk midplane, or
ξ ' 1 if magnetic buoyancy is dominant.

GL79 intuitively proposed that the amplification of the
toroidal field could be described by

Bφ
Bz
'∓

γ(ΩNS −ΩK)h
ξvAz

, (3)

where the upper sign corresponds to the case z> 0. An issue with
the above definition, as spotted by WG87, is that the magnetic

1 Rc corresponds to the distance from the NS at which the Keplerian
angular velocity of the material in the disk (ΩK) is equal to the NS angu-
lar velocity (ΩNS).

pressure generated by the wound field (Bφ/8π) would exceed
the thermal pressure p in the disk at radii >Rc, thus invali-
dating all calculations for the magnetic threaded disks beyond
the corotation radius. Furthermore, the quantity

∫ Rs

RM
BφBzR2dR,

where RM is the magnetospheric radius and Rs is a screen-
ing radius beyond which the magnetic threading of the disk
becomes negligible, would diverge for thin disks at large radii
(Rs→∞; Shakura & Sunyaev 1973; hereafter S73). Therefore,
GL79 introduced the screening radius to artificially limit the
integration and avoid divergence. The integrated quantity men-
tioned above is important in the threaded disk model, as it reg-
ulates the torque acting on the NS that is produced by the star
magnetic field lines penetrating the accretion disk. The magne-
tospheric radius can be calculated by equating the rate at which
the NS magnetic field removes angular momentum from the disk
and viscosity transfers it at larger radii in the disk as follows

Bφ(RM)Bz(RM)

Ṁ(GMRM)1/2
=−

1
2(RM)3 (4)

here Ṁ is the mass accretion rate. It is worth noting that Eq. (4)
is only valid for RM <Rc, as in the opposite case the magnetic
field would add angular momentum to the disk rather than
removing it. GL79 solved the above equations by assuming a
boundary layer solution, in which material from the disk is pro-
gressively brought into corotation with the star by the magnetic
field lines penetrating the disk. The boundary layer is divided in
a broad outer zone extended between RM and Rs, where most of
the threading takes place, and an inner boundary located within
RM and characterized by a limited radial extent (δR�RM). In the
inner boundary, magnetic stresses are larger than viscous stresses
and thus matter is lifted from the disk before being accreted onto
the NS. Following this treatment, GL79 found that

RGL79
M ' 0.52RA = 0.52µ4/7(2GM)−1/7Ṁ−2/7

' 1.6× 106µ4/7
26 M−1/7

1.4 Ṁ−2/7
16 cm, (5)

where µ26 = µ/1026 G cm3, Ṁ16 = Ṁ/1016 g s−1, and RA is the so-
called Alfvén radius. RA is usually considered a good approx-
imation of the magnetospheric radius in case of spherical
(as opposed to disk) accretion (see discussion in B09 and
Bozzo et al. 2008). In the following, we will use for convenience
the non-dimensional quantity:

xGL79 = RGL79
M /Rc ' 0.94µ4/7

26 M−8/7
1.4 Ṁ−2/7

16 P−2/3
−3 . (6)

In the GL79 approach, the magnetospheric radius is a good
approximation of the inner disk radius, as the extension of the
transition region between the disk and the closed NS magne-
tosphere (δR) is estimated to be only a few % of the magne-
tospheric radius. We note, however, that in other approaches
proposed for the calculation of the magnetospheric radius the
properties of the transition region can be significantly different
(see, e.g., Erkut & Alpar 2004).

In WG87 the authors derived a different version of Eq. (3)
starting from the Faraday induction law and obtained:

Bφ
Bz
'±

∣∣∣∣∣γ(ΩNS −ΩK)h
ξvAz

∣∣∣∣∣1/2 . (7)

This formulation solves the divergence as well as the magnetic
pressure issues affecting the GL79 treatment. In this context, the
magnetospheric radius can be readily calculated from Eqs. (4)
and (7). If the disk is considered to be well approximated by
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the solution of S73, then h = cs/ΩK and cs = (p/ρ)1/2. Here, cs
is the sound velocity in the disk, ρ its density, and p the thermal
pressure. For the innermost gas-pressure dominated region of the
S73 disk (region B), the magnetospheric radius in units of the
corotation radius is (see Eq. (16) in B09):

x−211/80
w

√
1− x3/2

w = 1.4× 10−2
√
ξγ−1η−3α9/40

× µ−3/2
26 µ1/4

p m7/6P211/120
−3 Ṁ4/5

16 . (8)

For the outer gas-pressure dominated region of the disk (the C
region), it is found (see Eq. (18) in B09) that

x−85/32
w

√
1− x3/2

w = 1.6× 10−2
√
ξγ−1η−3α9/40

× µ−3/2
26 µ1/4

p m7/6P85/48
−3 Ṁ63/80

16 . (9)

For the region A of the S73 disk (where the disk is dominated by
radiation pressure), we obtain:

x−19/8
w

√
1− x3/2

w = 1.8× 10−2
√
ξγ−1η−3α1/4

× µ−3/2
26 m2/3P19/12

−3 Ṁ16. (10)

We note that the case of region A (not reported previously by
B09) is added here for completeness. In all the above equations
µp is the mean molecular weight (µp = 0.615 for matter char-
acterized by solar metallicity) and α is the viscosity parameter.
For transient X-ray binaries in outbursts, the latter is believed to
span the range ∼0.1–0.4 (King 2012; King et al. 2013; Lii et al.
2014). Equations (8)–(10) must be solved numerically to com-
pute xw as a function of all other parameters. The transition
between region B and region A of the disk occurs when the mag-
netospheric radius is (S73)

rab = 2.3× 106α2/21m7/21Ṁ16/21
16 cm, (11)

while the radius for the transition between region C and B is

rbc = 2.7× 108m1/10Ṁ2/3
16 cm. (12)

By using the above equations, it can be seen that for a NS with a
spin period as short as a few milliseconds, the magnetospheric
radius is located inside the region A for mass accretion rates
&1016 g s−1. The predicted height of the disk around this radius
would be a factor of approximately ten larger than that allowed
by a S73 disk (h/R∼ 0.01), due to the steep dependence of the
disk height in region A on the mass accretion rate. As all the
equations being used here are strictly valid only in case of thin
disks and we are mainly interested in the low mass accretion
regime (see Sect. 3), we limit all our analyses to Ṁ16 . 1.

Wang (1995) investigated also the impact of slightly different
prescriptions for the growth of the toroidal magnetic field, beside
the one presented in Eq. (7). In particular, he considered the case
in which the amplification of the toroidal field is limited by either
diffusive decay due to turbulent mixing within the disk or by
reconnections occurring within the NS magnetosphere. In these
cases

Bφ
Bz
'
γ(ΩNS −ΩK)

αΩK
, (13)

or

Bφ
Bz

=

{
γmax(ΩNS −ΩK)/ΩK, ΩK &ΩNS;
γmax(ΩNS −ΩK)/ΩNS, ΩK . ΩNS,

(14)

respectively (γmax is a parameter representing the maximum
value of the magnetic azimuthal pitch). By using the same pro-
cedure as before, we finds for the magnetospheric radius (B09):

x−7/2
w − x−2

w = 2.38× 10−2αγ−1η−2µ−2
26

×m5/3P7/3
−3 Ṁ16 (15)

and

x−7/2
w − x−2

w = 2.38× 10−2γ−1
maxη

−2µ−2
26

×m5/3P7/3
−3 Ṁ16, (16)

respectively for Eqs. (13) and (14). We note that these two pre-
scriptions hold independently of the disk region where the mag-
netospheric radius is located.

As discussed in B09, the magnetospheric radius estimated
from Eqs. (8)–(10), (15), and (16) is smaller than that computed
from Eq. (6), at low mass-accretion rates (assuming a consis-
tent value of η between the different treatments). This is shown
in Fig. 1, where, as a representative example, we plot the ratio
between the magnetospheric radii calculated with Eq. (6) and
Eq. (15) (as shown in B09, Eqs. (8)–(10), (15), and (16) provide
relatively similar results were compared to those of GL79). We
note that in this figure we have used η= 0.2 for both Eq. (6) and
Eq. (15). The value η= 0.2 was first suggested by GL79 solv-
ing in details the structure of the transition region between the
closed NS magnetosphere and the accretion disk. The same value
was adopted by WG87 in his revised version of the magnetically
threaded disk model. A revised value of this parameter (as large
as η' 1.0) was suggested by WG96 using the observations of
quasi-periodic oscillations in X-ray pulsars and assuming these
could be interpreted with the so-called beat frequency model
(BFM; Alpar & Shaham 1985; Lamb et al. 1985). The observa-
tional data were compared in WG96 with an approximate solu-
tion to the Eq. (15) obtained by assuming that the magnetic pitch
Bφ/Bz of Eq. (7) is constant and not depending from the radius.
This approach was later revised by B09, who showed that when
all parameter dependences are retained and more updated obser-
vations of X-ray pulsars are used, the application of the BFM is
not straightforward and it is not possible to firmly conclude on
the correct value of η to be used. For this reason, we assume for
the purpose of all analyses in this paper η' 0.2. This also allows
us to carry out a self-consistent comparison between the magne-
tospheric radius originally derived by GL79 and the one revised
by WG87, WG95, and WG97.

2.2. Inclined rotator case

The extension of the WG87 calculation of the magnetospheric
radius to the case of an oblique rotator (i.e., when the NS mag-
netic and spin axes are not aligned) was presented by WG97. We
summarize here his treatment2 and report the main equations that
are needed for our scope. The NS magnetic field components in
the radial, azimuthal, and vertical directions for an oblique rota-
tor in the vicinity of the disk are

BR = 2η
( µ
R3

)
sin χ cos φ (17)

Bφ = η
( µ
R3

)
sin χ sin φ+ bφ

Bz = η
( µ
R3

)
cos χ.

2 A simplified treatment of the magnetospheric radius in case of an
oblique rotator was also presented by Jetzer et al. (1998).
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0.001 0.010 0.100 1.000
dM/dt (1016 g s-1)

0.1

1.0

R
M

/R
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L
79

Fig. 1. Ratio of the GL79 magnetospheric radius to the magneto-
spheric radius calculated in the revised threaded disk model accord-
ing to (Eq. (15); WG95) as a function of the mass accretion rate. We
assumed Pspin = 1.69 ms, α= 0.4, η= 0.2, µ26 = 0.78 (see Sect. 2.2), and
γ= 1.0.

In the equations above, χ is the inclination angle between the
magnetic and rotational axes, while bφ is the magnetic field gen-
erated through the shear of the dipolar field lines by the mate-
rial in the disk. Among the different WG87 prescriptions for the
poloidal field, we consider here the case of Eq. (13) (the mag-
netospheric radius in all WG87 and W95 prescriptions behave
in a qualitatively similar way, see B09). According to this pre-
scription, the value of bφ at the upper (z = h) and inner (R = RM)
surfaces of the disk are

b(upper)
φ = − Γ

[
1−

(ΩNS

ΩK

)]
Bz (18)

b(inner)
φ =Γ

[
1−

(ΩNS

ΩK

)]
BR,

respectively (Γ = γ/α). Assuming the case of a S73 thin disk, we
also have bφ(z) =−bφ(−z) and thus Eq. (4) becomes

Ṁ
d

dR
(
ΩKr2) =−h

d
dR

(
R2〈b(inner)

φ BR〉
)
− b(upper)

φ BzR2, (19)

calculated above at R = RM. From this equation Wang (1997) has
obtained an expression for the magnetospheric radius3:

Ṁ
√

GMRM =
2Γη2µ2

R3
M

×
[
(1− x3/2

w ) cos2 χ+
( h0

RM

)
(8− 5x3/2

w ) sin2 χ
]
,

(20)

where h0 = h(R = RM) is the disk height at RM that can be
obtained from S73 for the three different regions A, B, and C.
Equations (19) and (20) correspond to Eqs. (6) and (7) of WG97.
As neither the full derivation of these two equations, nor all
required assumptions to obtain them were provided by WG97,
we complete the current section with Appendix A. We note that
Eq. (20) reduces to Eq. (15) for χ= 0 deg.

The solutions to the full Eq. (20) were not reported by
WG97. This author only showed the approximate decrease of

3 We note that in this treatment we are not taking into account the
additional complication of possible vertical torques that might lead to
the presence of a tilted accretion disk (see, e.g., Lai 1999, and references
therein).

1014 1015 1016

Ṁ̇(g/s)

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R M
/R

C

χ=0̇deg.
χ=10̇deg.
χ=20̇deg.
χ=30̇deg.
χ=40̇deg.
χ=50̇deg.
χ=60̇deg.
χ=70̇deg.
χ=80̇deg.
χ=87̇deg.

Fig. 2. Magnetospheric radius in units of the corotation radius as a
function of the mass accretion rate obtained for the case of an inclined
rotator from Eq. (20). We assumed Pspin = 1.69 ms, α= 0.4, η= 0.2, and
γ= 1.0. Different values for the inclination angle are shown in different
colors for clarity. The magnetic moment corresponding to each angle is
obtained from Eq. (21) by assuming Ṗspin = 5.39× 10−21 s s−1.

the magnetospheric radius at high inclination angles using a
simplified version of Eq. (20) where: (i) the radial dependence
of the terms |b(upper)/Bz| and |b(inner)/Br| is neglected and they
are kept constant at a fixed value calculated at the magneto-
spheric radius; (ii) the term h0/RM is also assumed constant and
fixed (h0/RM = 0.01), neglecting its dependence from RM and the
mass accretion rate. We show the solutions to the full Eq. (20)
in Fig. 2, where we retained all functional dependences of the
different terms. We assumed α= 0.4, η= 0.2, γ= 1.0, and a set
of representative cases for the inclination angle. Compared to
WG97, we also introduced a more self-consistent estimate of
the NS magnetic moment which includes the dependence from
the inclination angle, following the arguments by Spitkovsky
(2006):

µ26 = 2.6× 1011(PspinṖspin)1/2(1 + sin2(χ))−1/2 G cm3. (21)

Here Pspin is the NS spin period and Ṗspin its derivative esti-
mated from the radio pulsations. We used values representative
of the fastest transitional millisecond pulsars Pspin = 1.69 ms and
Ṗspin = 5.39× 10−21 s s−1 (see Sect. 3), such that µ26 ranges from
0.78 for χ= 0 deg to 0.55 for χ= 87 deg. In all cases, the mag-
netospheric radius is located within the region B of the S73
disk (see Eqs. (11) and (12)). In this region, the height of the
disk practically scales linearly with the radius and thus h0/RM
changes significantly with the mass accretion rate but not with
the different inclination angles. For the specific set of parameters
used in Fig. 3, h0/RM ' 0.002 at Ṁ16 ' 0.001 and h0/RM ' 0.007
at Ṁ16 ' 1.

We note that solutions to Eq. (20) at mass accretion rates
lower than∼1013 g s−1 are only found for inclination angles lower
than 50 deg (for the adopted set of the other parameters). In gen-
eral, the minimum value of the mass accretion rate and maxi-
mum value of the inclination angle for which solutions to Eq. (20)
exists depend strongly from the parameter η (for a given parame-
ter α and a NS with a given mass, radius, and magnetic moment).
The larger is η, the larger (smaller) is the minimum accretion rate
(maximum inclination angle) for which solutions exist.

The interesting feature that emerges from Fig. 2 is that the
magnetospheric radius gets progressively smaller when larger
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Fig. 3. Comparison between the magnetospheric radius calculated
according to the WG97 (see Eq. (20)) and the GL79 (see Eq. (6)) pre-
scriptions as a function of the inclination angle and for five values of
the mass accretion rates. We include the highest considered value of
the mass accretion rate and the minimum value for which solutions to
Eq. (20) are found for all considered inclination angles. We assumed
Pspin = 1.69 ms, α= 0.4, η= 0.2, and γ= 1.0. The magnetic moment
corresponding to each angle is obtained from Eq. (21) by assuming
Ṗspin = 5.39× 10−21 s s−1 and Pspin = 1.69 ms.
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Ṁ̇(g/s)

0.2

0.4

0.6

0.8

1.0

1.2

R M
/R

G
L7

9
M

χ=0̇deg.
χ=10̇deg.
χ=20̇deg.
χ=30̇deg.
χ=40̇deg.
χ=50̇deg.
χ=60̇deg.
χ=70̇deg.
χ=80̇deg.
χ=87̇deg.

Fig. 4. Similar to Fig. 3, but here the comparison between the two
magnetospheric radius prescriptions is shown as a function of the mass
accretion rate and for different inclination angles.

inclination angles are considered (at comparable mass accretion
rates). For χ& 60 deg, the magnetospheric radius can be up to a
factor of ∼2.5 smaller than that of the aligned rotator case pre-
sented by W87 and W95. The direct comparison between the
magnetospheric radius of an inclined dipole according to the
WG97 theory and the GL79 treatment is shown in Figs. 3 and 4
(we note that Eq. (6) has been calculated in both figures by using
the case χ= 0 for the NS magnetic moment in Eq. (21), as the
GL79 approach is formally derived in case of an orthogonal rota-
tor). Figure 3 shows the ratio between the magnetospheric radius
of W97 and GL79 as a function of the inclination angle for three
values of the mass accretion rate. This is similar to Fig. 2 in
WG97 but we made use of a full (and not simplified) solution to
Eq. (20) and use RGL79

M instead of RA in the comparison. Figure 4
shows the ratio of the magnetospheric radius of W97 to GL79
as a function of the mass accretion rate for different inclination
angles, highlighting the fact that the largest difference between

the magnetospheric radius in the two treatments occurs toward
lower mass accretion rates and higher inclination angles (with
the effect of the inclination angle being more effective toward
higher mass accretion rates).

3. Application to low level accretion onto
transitional millisecond pulsars

Transitional millisecond pulsars are a sub-class of low mass
X-ray binaries (LMXBs) hosting a NS which have been
observed to switch between the rotation-powered to accretion-
powered regimes (see, e.g., Kluzniak et al. 1988; Tauris
2015). So far, three confirmed systems have been identified:
PSR J1023+0038 (Archibald et al. 2009; Patruno et al. 2014),
XSS J12270-4859 (Saitou et al. 2009; de Martino et al. 2010,
2014), and IGR J18245-2452 (Papitto et al. 2013; Ferrigno et al.
2014). The pulse period of the first two systems is strikingly sim-
ilar, ∼1.69 ms. IGR J18245-2452 hosts a NS spinning at 3.9 ms.
Two candidate systems, 3FGL J1544.6-1125 and 3FGL J0427.9-
6704, have been suggested by Bogdanov & Halpern (2015) and
Strader et al. (2016), but no spin period has yet been reported for
these sources. In the rotation-powered regime, the pressure of
the NS dipole radiation is believed to push away the surround-
ing accretion disk and the compact object shines as a millisec-
ond radio pulsar. In this state, only a moderate X-ray luminosity
of .1032 erg s−1 is recorded. This is ascribed to the presence
of an intra-binary shock formed by the interaction between the
pulsar wind and the material lost by the companion star (see,
e.g., Bogdanov et al. 2015; Bassa et al. 2014). When the accre-
tion disk is formed around the NS, the system switches to an
accretion powered regime. So far, only IGR J18245-2452 has
displayed an accretion powered X-ray regime with a peak lumi-
nosity (1036–1037 erg s−1) and spectral timing properties similar
to those of classical accreting millisecond X-ray pulsars in out-
burst (hereafter, AMXPs; Patruno & Watts 2012). The two other
confirmed systems and the candidate transitional pulsar likely
underwent only some lower level accretion episodes, with typ-
ical luminosities of a few 1033 erg s−1. This sub-luminous disk
state (Linares 2014; Papitto et al. 2015) is usually character-
ized by a prominent variability in X-rays, and the presence of
three distinct emission modes: a low mode, during which the
luminosity can be as low as ∼5× 1032 erg s−1, a high mode in
which the typical luminosity is ∼(3−5)× 1033 erg s−1, and a flar-
ing mode where the luminosity can increase by another factor
of ∼10. The switch between the different modes can be as fast
as a few seconds, and the mechanism regulating these switches
has not yet been understood (Bogdanov et al. 2015). During
the high mode, the X-ray emission of transitional pulsars dis-
plays little variability and this is the only mode where X-ray
pulsations could be clearly identified from both XSS J12270-
4859 and PSR J1023+0038. For the first source, Papitto et al.
(2015) measured a high mode average X-ray luminosity of
LX ∼ 5× 1033 erg s−1 (assuming a source distance of 1.40 kpc)
and a pulsed fraction of 6–7% in the 0.5–11 keV energy range.
For PSR J1023+0038, Archibald et al. (2015) measured an aver-
age high mode luminosity of LX ∼ 3× 1033 erg s−1 (0.3–10 keV)
and a pulsed fraction of about 8% in a similar energy band (for
a source distance of 1.37 kpc). In both cases, the authors inter-
pret the observed X-ray pulsations as due to accretion onto the
NS (see also Ambrosino et al. 2017, who found indications for a
rotationally-powered activity from PSR J1023+0038).

Although the phenomenologically complex sub-luminous
disk state of the transitional pulsars is still lacking an exhaustive
interpretation and many questions remain open (Campana et al.
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2016), the discovery of accretion powered X-ray pulsations at
the low X-ray luminosities of the high mode is particularly puz-
zling because it challenges the “standard” accretion scenario
that is usually invoked to interpret the observations of transi-
tional pulsars and other classes of accreting millisecond NS
X-ray binaries (see below). In the following, we focus on this
peculiar property of the high emission mode and in particular
on the consideration of how low level accretion in these sources
could still give rise to X-ray pulsations at such unprecedentedly
low X-ray luminosity level. At present, we cannot also explain
with our considerations other phenomena observed in the sub-
luminous disk state. We plan to discuss these in a future exten-
sion of this work.

It is generally believed that accretion in a disk-fed NS LMXB
can only take place as long as the NS magnetospheric radius is
smaller than the corotation radius (see, e.g., Frank et al. 2002).
According to this standard scenario, when RM becomes larger
than Rc, it is expected that the centrifugal force at the boundary
between the NS magnetosphere and material in the disk pushes
the inflowing matter away, inhibiting accretion and driving
outflows (the so-called propeller effect; Illarionov & Sunyaev
1975). To estimate the X-ray luminosity at which the onset of
the propeller is expected in the case of the transitional pul-
sars, Papitto et al. (2015) and Archibald et al. (2015) used an
expression for the magnetospheric radius very similar to the
GL79 prescription (see Eq. (6)). As a result of this calculation
they found that in both XSS J12270-4859 and PSR J1023+0038
accretion should be strongly inhibited already at luminosi-
ties LX & 2× 1035 erg s−1. These authors thus suggested that the
detection of X-ray pulsations in the sub-luminous disk state of
these systems should not occur, unless very powerful outflows
are generated by the rotating NS magnetosphere which remove
&95–99% of the matter inflowing at the inner disk boundary. If
this were the case, the large mass inflow rate would maintain
RM <Rc, such that low level accretion could take place in the
standard scenario.

While the presence of outflows in transitional pulsars has
been supported by radio observations (see, e.g., Hill et al. 2011;
Ferrigno et al. 2014), a quantitative estimate of the ratio between
the inflowing and outflowing mass rate from these systems can-
not yet be reliably constrained from the observations. Advanced
magnetohydrodynamic simulations of a rapidly rotating NS sur-
rounded by a disk show that outflows can be generated in the
so-called weak propeller regime, when RM &Rc, but the mass
ejection rate is at the most comparable to the mass accretion
rate (not larger than ∼20% of the total mass inflow rate in the
simulations of Ustyugova et al. 2006). In the strong propeller
regime, when RM�Rc, the ejection efficiency can reach about
80% (Lii et al. 2014; Lovelace et al. 2013) that is still signifi-
cantly lower than the level required in the cases of XSS J12270-
4859 and PSR J1023+0038. In the strong propeller regime it
is also unlikely that the bulk of the X-ray emission is dom-
inated by residual accretion. As an example, in the case of
IGR J18245-2452, the strong propeller regime has been invoked
to explain the dramatic hardening of the source X-ray emission
in terms of shocks that form between the outflows and the sur-
rounding medium (rather than by residual accretion; see, e.g.,
Ferrigno et al. 2014).

Only in the white dwarf binary AE Aquarii, evidence
has been found for propelling efficiencies as high as 97%
(Oruru & Meintjes 2012). Therefore, it has been suggested that
such extreme values cannot be ruled out. We show below that the
need of extreme ejection efficiencies to explain the X-ray pulsa-
tions of transitional pulsars in the sub-luminous disk state might

not be needed if the WG97 prescription of the magnetospheric
radius is used in place of the GL79 simplified model.

The luminosities at which pulsations have been detected in
the X-ray emission of XSS J12270-4859 and PSR J1023+0038
correspond to mass accretion rates of Ṁ ≈ LXRNS/ (GMNS) =
(2−3)× 1013 g s−1. The approximate model of GL79 would give
a magnetospheric radius at these very low mass accretion rates
that is ∼3 times larger than the corotation radius, thus requir-
ing the extreme outflows invoked by Papitto et al. (2015) and
Archibald et al. (2015) to allow for (at least) some residual
accretion and X-ray pulsations. According to WG97 calcula-
tions, the magnetospheric radius is still significantly smaller
than the corotation radius even at mass accretion rates as
low as ∼2−3× 1013 g s−1. In case the NS is endowed with
a large inclination angle (χ& 60–70 deg), the magnetospheric
radius is further reduced compared to the GL79 approach
(even though this parameter is more effective at reducing
the magnetospheric radius toward higher mass accretion rates;
see Fig. 2). Under these assumptions, little to no outflows
would thus be required to explain the pulsations at the very
low X-ray luminosities recorded from XSS J12270-4859 and
PSR J1023+0038 in the high mode of the sub-luminous-disk
state.

For all computations in Fig. 2 we have assumed that the
inclination angle also determines the effective dipole magnetic
moment of the NS estimated through Eq. (21) and a spin period
derivative of 5.39× 10−21 s s−1, as observationally measured in
the case of PSR J1023+0038 (Archibald et al. 2013). These
results are thus equally applicable to the case of XSS J12270-
4859, as the spin period of the NS hosted in this system is virtu-
ally identical to that of PSR J1023+0038 and also the spin period
derivatives of the two systems are fairly similar (Roy et al.
2015).

Interestingly, some evidence for a large inclination angle
(>60 deg) between the rotation and magnetic axis of the NS in
XSS J12270-4859 is provided by Papitto et al. (2015), using also
the results published by de Martino et al. (2014). This makes
our application of the W97 prescription for the magnetospheric
radius calculation at large inclination angles promising for tran-
sitional millisecond pulsars in general.

4. Discussion and conclusions

In this paper we have reviewed the basic assumptions of the mag-
netically threaded disk model for accreting NS in X-ray bina-
ries in both the original treatment presented by GL79 and the
revised approach by W87 and WG95. The models make differ-
ent predictions for the magnetospheric radius as a function of
the mass accretion rate, with WG97 also extending the calcula-
tions to the case of an inclined dipole. The simplified approach
of GL79 predicts that the magnetospheric radius is proportional
to Ṁ−2/7. In the approach of W87 and W95 for an aligned rota-
tor, the increase of the magnetospheric radius for decreasing
mass accretion rates is slower and more complex. The most
noticeable difference between these approaches occur at lower
mass accretion rates. Moreover, when the full equations given
in WG97 are solved, the magnetospheric radius is found to be
further reduced at large inclination angles between the NS rota-
tion and magnetic axes (with an effect more pronounced toward
larger mass accretion rates). Assuming for consistency the same
value of the screening parameter η= 0.2 in all cases, the mag-
netospheric radius obtained from WG97 can be as small as
∼0.3 times the value expected from the GL79 calculations either
for low mass accretion rates (∼1013–1015 g s−1) or for higher
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mass accretion rates (&1015 g s−1) and large inclination angles
(χ& 60 deg).

We applied the magnetospheric radius prescription of W97
to the case of transitional millisecond pulsars, which are a sub-
class of NS LMXBs showing a peculiar X-ray variability during
their so-called sub-luminosity accretion state. The phenomenol-
ogy observed during this state is complex, with three different
emission modes identified (high, low, flaring) and rapid switches
(a few seconds) occurring between them. So far there is still
not an agreed scenario to explain all these behaviors, and we
focused here in particular on the puzzling accretion-driven X-ray
pulsations observed only during the high mode at an unprece-
dentedly low luminosity level (2−3× 1033 erg s−1) compared to
that of other previously known accreting millisecond X-ray pul-
sars in LMXBs (&1035 erg s−1). Following the usually adopted
GL79 approach for the calculation of the magnetospheric radius,
it is expected that at the mass accretion rates corresponding to a
luminosity of 2−3× 1033 erg s−1, the system should enter a very
strong propeller regime with virtually no accretion taking place
(and thus no detectable X-ray pulsations). Other works in the
literature about the high mode of the transitional pulsars have
proposed a scenario in which there is a substantial mass trans-
fer from the companion to the NS to sufficiently compress the
compact object magnetosphere and formally allow accretion, but
at least ∼95–99% of this material is ejected away by a very
efficient propeller to explain the low luminosity at which pul-
sations are recorded (Papitto et al. 2015; Archibald et al. 2015).
Even though these high propelling-efficiencies can not be com-
pletely ruled out from the analogy with the white dwarf binary
AE Aquarii, they are difficult to be reconciled with currently
available MHD simulations of accreting NS in LMXBs. We
showed that the revised magnetically threaded disk model pre-
sented by WG97 predicts a substantially smaller magnetospheric
disk radius compared to GL79, especially when low mass accre-
tion rates and high inclination angles between the NS mag-
netic and rotational axis are considered (assuming consistent val-
ues of the other involved parameters). If the WG97 approach
is used to estimate the magnetospheric radius, it is possible to
envisage that accretion still takes place in the transitional pul-
sars when the mass accretion rate from the companion is as
low as (2−3)× 10−13 g s−1. This could potentially explain how
to produce accretion-driven X-ray pulsations at a luminosity of
2−3× 1033 erg s−1 without invoking very strong propellers.
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Appendix A: Full derivation of Eq. (20)

We report here for reference the detailed calculations used to
derive Eq. (20). Following the W97 approach, let us consider an
NS endowed with a tilted dipolar magnetic field:

BR = 2η
( µ
R3

)
sin χ cos φ (A.1)

Bφ = η
( µ
R3

)
sin χ sin φ+ bφ

Bz = η
( µ
R3

)
cos χ.

Here, χ is the tilt angle between the NS magnetic and rotational
axes, while bφ is the magnetic field generated by the interaction
of the NS magnetic field lines with the disk material in a Kep-
lerian orbit around the compact object. This field is expressed at
the upper (z = h) and inner (R = R0) surface of the disk as follows:

b(upper)
φ = − Γ

[
1−

(ΩNS

ΩK

)]
Bz (A.2)

b(inner)
φ =Γ

[
1−

(ΩNS

ΩK

)]
BR.

Due to the symmetry of the problem bφ(z) = −bφ(−z). We derive
first Eq. (19) by starting from the Euler equation in a stationary
state:

ρ(v · ∇)v =−∇P − ρ∇Φ+
1

4π
(
∇ × B

)
× B. (A.3)

According to Eq. (A.2), Bz does not depend on φ, thus the
azimuthal component of the Lorentz force can be written as

1
4π

[(∇ × B) × B]φ =
1

4π

[
1
R

BφBR + BR∂R(Bφ)

+ Bz∂z(Bφ)−
1
R

BR∂φ(BR)
]
.

Using the identity

(
v · ∇

)
v =

1
2
∇ν2 +

(
∇× v

)
× v

we can rewrite the φ component of the left hand side of Eq. (A.3)
as

ρ

[
1
2
∇v2 + (∇× v) × v

]
φ

= ρ

[
1

2R
∂φ(v2) +

1
R

vφvR + vR∂R(vφ)

+ vz∂z(vz)−
1
R

vr∂φ(vr)−
1
R

vz∂φ(vz)
]

=
ρ

R
vR∂R(Rvφ) +

ρ

2R
∂φ(v2

φ).

Here we also assumed that the matter leaves the disk only once
inside the magnetospheric radius and that for a thin disk vz = 0.
We thus obtain

ρRvR∂R(Rvφ) =
1

4π

[
BφBRR + R2BR∂R(Bφ) (A.4)

+ R2Bz∂z(Bφ)−RBR∂φ(BR)
]

− ρR∂φΦ−R∂φ(P)−
ρ

2
R∂φ(v2

φ).

Here the term ∂φΦ vanishes due to the axial symmetry of gravi-
tational potential. Under the further assumption that P and vφ are
φ-independent4 with vφ ' ΩKR, we can write

ρRvR∂R(ΩKR2) =

1
4π

[
BφBRR + R2BR∂R(Bφ) + R2Bz∂z(Bφ)−RBR∂φ(BR)

]
(A.5)

Equation (A.5) can be written in the following way:

ρRvR∂R(ΩKR2) =
1

4π

[
∂R(R2bφBR) + ∂z(bφBz)R2

]
+ A(R, φ, z)

(A.6)
where∫ 2π

0
A(R, φ, z)dφ= 0. (A.7)

To demonstrate Eq. (A.6), we note that

R2BR∂RBφ = ∂(R2BRBφ)− 2RBφBR −R2Bφ∂RBR,

and

R2Bz∂zBφ = R2∂z(BzBφ)−R2Bφ∂zBz.

We thus obtain for the right hand side of Eq. (A.5)

=
1

4π

{
∂R(R2BRBφ) + R2∂z(BzBφ)−R2Bφ

[
∂R(BR) + ∂z(Bz)

]
−RBR∂φ(BR)−RBφBR

}
From the second Maxwell equation, we have

∂R(BR) + ∂z(Bz) =−
BR

R
−

1
R
∂φBφ,

and thus

1
4π

[
∂R(R2BRBφ) + R2∂z(BφBz) + R2Bφ

(
BR

R
+

1
R
∂φ(Bφ)

)
−RBR∂φ(BR)−RBφBz

]

=
1

4π

∂R(R2BRBφ)︸        ︷︷        ︸
i

+ R2∂z(BφBz)︸       ︷︷       ︸
ii

+ RBφ∂φ(Bφ)︸       ︷︷       ︸
iii

−RBR∂φ(BR)︸       ︷︷       ︸
iv

 .
By using the relation

Bφ = bφ −
1
2
∂φ(BR) (A.8)

that can be obtained from Eq. (A.2), we can rewrite the four
terms above as

i→ ∂R(R2BRBφ) = ∂R(R2bφBR)−
1
2
∂R[R2BR∂φ(BR)]

ii→ R2∂z(BφBz) = R2∂z(bφBz)−
R2

2
∂z[Bz∂φ(BR)]

iii→ RBφ∂φ(Bφ) =
1
2

R∂φ(B2
φ)

iv→ = RBR∂φ(BR) =−
1
2

R∂φ(B2
R),

4 We note that the term ∂φ(P) would be simplified later even in case P
is not assumed to be independent from φ, as its integration between 0
and 2π to be performed in the next steps fulfil the conditions expressed
by Eq. (A.9).
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and thus

A(R, φ, z)

=−
1

8π

{
∂R

[
R2BR∂φ(BR)

]︸              ︷︷              ︸
α

+ R2∂z
[
Bz∂φ(BR)

]︸             ︷︷             ︸
β

+ R∂φ(B2
R − B2

φ)︸          ︷︷          ︸
γ

}
.

To prove Eq. (A.7), it is sufficient to note that Bz does not depend
on φ and that for a generic function f (R, φ, z):∫ 2π

0
∂φ( f )dφ= f (2π)− f (0) = 0 (A.9)

Equation (A.6) has now to be integrated over φ from 0 to
2π and over z from −h to h. Taking into account the simplifica-
tions possible under the assumption of a thin disk case and the
continuity equation

Ṁ =−

∫ 2π

0
Rdφ

∫ h

−h
ρvRdz,

we obtain for the left hand side of Eq. (A.6)∫ 2π

0
dφ

∫ h

−h
dzρRvR∂R(ΩKR2) =

d
dR

(ΩKR2)R
∫ 2π

0
dφ

∫ h

−h
dzρvR

=−Ṁ
d

dR
(ΩKR2)

For the first and second right hand side term of Eq. (A.6), we
have∫ 2π

0
dφ

∫ h

−h
dz∂R

(
R2 bφBR

4π

)
=

1
4π

∫ 2π

0
dφ∂R

(
R2

∫ h

−h
bφBRdz

)
=

h
2π

d
dR

(
R2

∫ 2π

0
b(inner)
φ BRdφ

)
= h

d
dR

(
R2〈b(inner)

φ BR〉
)

and∫ 2φ

0
dφ

∫ h

−h
dzR2∂z

(bφBz

4π

)
=

R2

4π

∫ 2π

0
dφ

[
bφBz

]h
−h

= R2b(upper)
φ Bz,

respectively. Putting all terms together, we get at R = RM

Ṁ
d

dR
(
ΩKr2) = −h

d
dR

(
R2〈b(inner)

φ BR〉
)︸                     ︷︷                     ︸

I

− b(upper)
φ BzR2︸        ︷︷        ︸

II

.

For the left hand side, we have

Ṁ
d

dR
(
ΩKr2)

RM
= Ṁ

d
dR

(√
GMR

)
RM

=
ṀGM
2
√

RM
·

For the two terms on the right hand side, we have

I→−h
d

dR
(R2〈b(inner)

φ BR〉)

= −
hΓ
2π

d
dR

{
R2

[
1−

(ΩNS

ΩK

)] ∫ 2π

0
B2

Rdφ
}

=
hΓη2µ2

R5 sin2 χ
[
8− 5

(ΩNS

ΩK

)]
→

h0Γη
2µ2

R5
0

sin2 χ(8− 5ω)

and

II→−b(upper)
φ BzR2 =ΓR2

[
1−

(ΩNS

ΩK

)]
B2

z

=→
Γη2µ2

R4 cos2 χ(1−ω).

We finally get

Ṁ
√

GMRM =
2Γη2µ2

R3
0

[
(1−ω) cos2 χ+

( h0

RM

)
(8− 5ω) sin2 χ

]
.
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