1,064 research outputs found

    Searching for coherent pulsations in ultraluminous X-ray sources

    Full text link
    Luminosities of ultraluminous X-ray sources (ULXs) are uncomfortably large if compared to the Eddington limit for isotropic accretion onto stellar-mass object. Most often either supercritical accretion onto stellar mass black hole or accretion onto intermediate mass black holes is invoked the high luminosities of ULXs. However, the recent discovery of coherent pulsations from M82 ULX with NuSTAR showed that another scenario implying accretion onto a magnetized neutron star is possible for ULXs. Motivated by this discovery, we re-visited the available XMM-Newton archival observations of several bright ULXs with a targeted search for pulsations to check whether accreting neutron stars might power other ULXs as well. We have found no evidence for significant coherent pulsations in any of the sources including the M82 ULX. We provide upper limits for the amplitude of possibly undetected pulsed signal for the sources in the sample.Comment: 2 pages, 1 figure, submitted to A&

    Supergiant, fast, but not so transient 4U 1907+09

    Full text link
    We have investigated the dipping activity observed in the high-mass X-ray binary 4U 1907+09 and shown that the source continues to pulsate in the "off" state, noting that the transition between the "on" and "off" states may be either dip-like or flare-like. This behavior may be explained in the framework of the "gated accretion" scenario proposed to explain the flares in supergiant fast X-ray transients (SFXTs). We conclude that 4U 1907+09 might prove to be a missing link between the SFXTs and ordinary accreting pulsars.Comment: 4 pages 5 figures, accepted in A&

    Population of the Galactic X-ray binaries and eRosita

    Full text link
    The population of the Galactic X-ray binaries has been mostly probed with moderately sensitive hard X-ray surveys so far. The eRosita mission will provide, for the first time a sensitive all-sky X-ray survey in the 2-10 keV energy range, where the X-ray binaries emit most of the flux and discover the still unobserved low-luminosity population of these objects. In this paper, we briefly review the current constraints for the X-ray luminosity functions of high- and low-mass X-ray binaries and present our own analysis based the INTEGRAL 9-year Galactic survey, which yields improved constraints. Based on these results, we estimate the number of new XRBs to be detected in the eRosita all-sky surveyComment: accepted for publication in A&

    Ten years of INTEGRAL observations of the hard X-ray emission from SGR 1900+14

    Get PDF
    We exploited the high sensitivity of the INTEGRAL IBIS/ISGRI instrument to study the persistent hard X-ray emission of the soft gamma-ray repeater SGR 1900+14, based on ~11.6 Ms of archival data. The 22-150 keV INTEGRAL spectrum can be well fit by a power law with photon index 1.9 +/- 0.3 and flux F_x = (1.11 +/- 0.17)E-11 erg/cm^2/s (20-100 keV). A comparison with the 20-100 keV flux measured in 1997 with BeppoSAX, and possibly associated with SGR 1900+14, shows a luminosity decrease by a factor of ~5. The slope of the power law above 20 keV is consistent within the uncertainties with that of SGR 1806-20, the other persistent soft gamma-ray repeater for which a hard X-ray emission extending up to 150 keV has been reported.Comment: Accepted for publication in Astronomy & Astrophysics. 4 page

    Exploring the role of X-ray reprocessing and irradiation in the anomalous bright optical outbursts of A0538-66

    Get PDF
    In 1981, the Be/X-ray binary (Be/XRB) A0538-66 showed outbursts characterized by high peak luminosities in the X-ray and optical bands. The optical outbursts were qualitatively explained as X-ray reprocessing in a gas cloud surrounding the binary system. Since then, further important information about A0538-66 have been obtained, and sophisticated photoionization codes have been developed to calculate the radiation emerging from a gas nebula illuminated by a central X-ray source. In the light of the new information and tools available, we studied again the enhanced optical emission displayed by A0538-66 to understand the mechanisms responsible for these unique events among the class of Be/XRBs. We performed about 10^5 simulations of a gas envelope photoionized by an X-ray source. We assumed for the shape of the gas cloud either a sphere or a circumstellar disc observed edge-on. We studied the effects of varying the main properties of the envelope and the influence of different input X-ray spectra on the optical/UV emission emerging from the photoionized cloud. We compared the computed spectra with the IUE spectrum and photometric UBV measurements obtained during the outburst of 29 April 1981. We also explored the role played by the X-ray heating of the surface of the donor star irradiated by the X-ray emission of the neutron star (NS). We found that reprocessing in a spherical cloud with a shallow radial density distribution can reproduce the optical/UV emission. To our knowledge, this configuration has never been observed either in A0538-66 during other epochs or in other Be/XRBs. We found, contrary to the case of most other Be/XRBs, that the optical/UV radiation produced by the X-ray heating of the surface of the donor star irradiated by the NS is non-negligible, due to the particular orbital parameters of this system that bring the NS very close to its companion.Comment: Accepted for publication in Astronomy & Astrophysics. Abstract abridged to meet arXiv requirement

    Scalar mixing and strain dynamics methodologies for PIV/LIF measurements of vortex ring flows

    Get PDF
    Fluid mixing operations are central to possibly all chemical, petrochemical, and pharmaceutical industries either being related to biphasic blending in polymerisation processes, cell suspension for biopharmaceuticals production, and fractionation of complex oil mixtures. This work aims at providing a fundamental understanding of the mixing and stretching dynamics occurring in a reactor in the presence of a vortical structure, and the vortex ring was selected as a flow paradigm of vortices commonly encountered in stirred and shaken reactors in laminar flow conditions. High resolution laser induced fluorescence and particle imaging velocimetry measurements were carried out to fully resolve the flow dissipative scales and provide a complete data set to fully assess macro- and micro-mixing characteristics. The analysis builds upon the Lamb-Oseen vortex work of Meunier and Villermaux [“How vortices mix,” J. Fluid Mech. 476, 213–222 (2003)] and the engulfment model of Baldyga and Bourne [“Simplification of micromixing calculations. I. Derivation and application of new model,” Chem. Eng. J. 42, 83–92 (1989); “Simplification of micromixing calculations. II. New applications,” ibid. 42, 93–101 (1989)] which are valid for diffusion-free conditions, and a comparison is made between three methodologies to assess mixing characteristics. The first method is commonly used in macro-mixing studies and is based on a control area analysis by estimating the variation in time of the concentration standard deviation, while the other two are formulated to provide an insight into local segregation dynamics, by either using an iso-concentration approach or an iso-concentration gradient approach to take into account diffusion

    Glancing through the accretion column of EXO 2030+375

    Full text link
    We took advantage of the large collecting area and good timing capabilities of the EPIC cameras on-board XMM-Newton to investigate the accretion geometry onto the magnetized neutron star hosted in the high mass X-ray binary EXO 2030+375 during the rise of a source Type-I outburst in 2014. We carried out a timing and spectral analysis of the XMM-Newton observation as function of the neutron star spin phase. We used a phenomenological spectral continuum model comprising the required fluorescence emission lines. Two neutral absorption components are present: one covering fully the source and one only partially. The same analysis was also carried out on two Suzaku observations of the source performed during outbursts in 2007 and 2012, to search for possible spectral variations at different luminosities. The XMM-Newton data caught the source at an X-ray luminosity of 2×10362\times10^{36} erg s1^{-1} and revealed the presence of a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. From the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from the Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (\gtrsim2×10372\times10^{37} erg s1^{-1}).Comment: Accepted for publication on A&
    corecore