264 research outputs found

    Determine the source term of a two-dimensional heat equation

    Full text link
    Let Ω\Omega be a two-dimensional heat conduction body. We consider the problem of determining the heat source F(x,t)=φ(t)f(x,y)F(x,t)=\varphi(t)f(x,y) with φ\varphi be given inexactly and ff be unknown. The problem is nonlinear and ill-posed. By a specific form of Fourier transforms, we shall show that the heat source is determined uniquely by the minimum boundary condition and the temperature distribution in Ω\Omega at the initial time t=0t=0 and at the final time t=1t=1. Using the methods of Tikhonov's regularization and truncated integration, we construct the regularized solutions. Numerical part is given.Comment: 18 page

    Determination of the body force of a two-dimensional isotropic elastic body

    Full text link
    Let Ω\Omega represent a two-dimensional isotropic elastic body. We consider the problem of determining the body force FF whose form ϕ(t)(f1(x),f2(x))\phi(t)(f_1(x),f_2(x)) with ϕ\phi be given inexactly. The problem is nonlinear and ill-posed. Using the Fourier transform, the methods of Tikhonov's regularization and truncated integration, we construct a regularized solution from the data given inexactly and derive the explicitly error estimate. Numerical part is givenComment: 23 page

    Optimal solutions for fixed head short-term hydrothermal system scheduling problem

    Get PDF
    In this paper, optimal short-term hydrothermal operation (STHTO) problem is determined by a proposed high-performance particle swarm optimization (HPPSO). Control variables of the problem are regarded as an optimal solution including reservoir volumes of hydropower plants (HdPs) and power generation of thermal power plants (ThPs) with respect to scheduled time periods. This problem focuses on reduction of electric power generation cost (EPGC) of ThPs and exact satisfactory of all constraints of HdPs, ThPs and power system. The proposed method is compared to earlier methods and other implemented methods such as particle swarm optimization (PSO), constriction factor (CF) and inertia weight factor (IWF)-based PSO (FCIW-PSO), two time-varying acceleration coefficient (TTVACs)-based PSO (TVAC-PSO), salp swarm algorithm (SSA), and Harris hawk algorithm (HHA). By comparing EPGC from 100 trial runs, speed of search and simulation time, the suggested HPPSO method sees it is more robust than other ones. Thus, HPPSO is recommended for applying to the considered and other problems in power systems

    Determining optimal location and size of capacitors in radial distribution networks using moth swarm algorithm

    Get PDF
    In this study, the problem of optimal capacitor location and size determination (OCLSD) in radial distribution networks for reducing losses is unraveled by moth swarm algorithm (MSA). MSA is one of the most powerful meta-heuristic algorithm that is taken from the inspiration of the food source finding behavior of moths. Four study cases of installing different numbers of capacitors in the 15-bus radial distribution test system including two, three, four and five capacitors areemployed to run the applied MSA for an investigation of behavior and assessment of performances. Power loss and the improvement of voltage profile obtained by MSA are compared with those fromother methods. As a result, it can be concluded that MSA can give a good truthful and effective solution method for OCLSD problem

    Power beacon-assisted energy harvesting in a half-duplex communication network under co-channel interference over a Rayleigh fading environment: Energy efficiency and outage probability analysis

    Get PDF
    In this time, energy efficiency (EE), measured in bits per Watt, has been considered as an important emerging metric in energy-constrained wireless communication networks because of their energy shortage. In this paper, we investigate power beacon assisted (PB) energy harvesting (EH) in half-duplex (HD) communication network under co-channel Interferer over Rayleigh fading environment. In this work, we investigate the model system with the time switching (TS) protocol. Firstly, the exact and asymptotic form expressions of the outage probability (OP) are analyzed and derived. Then the system EE is investigated and the influence of the primary system parameters on the system performance. Finally, we verify the correctness of the analytical expressions using Monte Carlo simulation. Finally, we can state that the simulation and analytical results are the same.Web of Science1213art. no. 257

    QUANTUM TELEPORTATION OF ENTANGLED STATES VIA GENERALIZED PHOTON-ADDED PAIR COHERENT STATE

    Get PDF
    In this paper, we study the quantum teleportation of an unknown atomic state based on the two-photon Jaynes-Cummings model, consisting of an effective two-level atom with a two-mode field in the generalized photon-added pair coherent state (GPAPCS). By applying the detecting method, we use a scheme that includes two two-level atoms and a cavity field to teleport the unknown atomic state from a sender to a receiver. The results show that the number of photons added to the field and the intensity of the initial field influence the average fidelity and success probability of the teleportation process. The time-evolution dependence of the average fidelity is also considered and compared for the field in the pair coherent state and in the GPAPCS
    corecore