999 research outputs found

    Hot white dwarfs and the UV delay in dwarf novae

    Full text link
    We calculate the effect of illumination of dwarf nova accretion discs by radiation from a hot, central, white dwarf. We show that only for very hot white dwarfs (Teff ~ 40 000$ K) the inner region of quiescent dwarf nova discs are partially depleted so that the delay between the rise to outburst of the optical and UV fluxes would be increased as suggested recently by King (1997). This depletion, however, must create several small outbursts between main outbursts, contrary to observations. Lower white dwarf temperatures may cause the outburts to be of the `inside-out' type removing the UV delay. We conclude that white dwarf irradiation of dwarf nova discs is not very efficient for example because the UV radiation from the hot white dwarf does not penetrate deep enough in the disc atmosphere. The total ablation of the inner disc by e.g. evaporation (possibly related to illumination) appears to be a very promising possibility, accounting for both the EUV delay and the general lightcurves properties.Comment: 6 pages, 8 figures; accepted for publication in MNRA

    X-ray irradiation in low mass binary systems

    Get PDF
    We calculate self-consistent models of X-ray irradiated accretion discs in close binary systems. We show that a point X-ray source powered by accretion and located in the disc plane cannot modify the disc structure, mainly because of the self-screening by the disc of its outer regions. Since observations show that the emission of the outer disc regions in low mass X-ray binaries is dominated by the reprocessed X-ray flux, accretion discs in these systems must be either warped or irradiated by a source above the disc plane, or both. We analyse the thermal-viscous stability of irradiated accretion discs and derive the stability criteria of such systems. We find that, contrary to the usual assumptions, the critical accretion rate below which a disc is unstable is rather uncertain since the correct formula describing irradiation is not well known.Comment: to be published in MNRAS, uses epsfig.st

    The Compact UV Nucleus of M33

    Get PDF
    The most luminous X-ray source in the Local Group is associated with the nucleus of M33. This source, M33 X-8, appears modulated by ~20% over a ~106 day period, making it unlikely that the combined emission from unresolved sources could explain the otherwise persistent ~1e39 erg/s X-ray flux (Dubus et al. 1997, Hernquist et al. 1991). We present here high resolution UV imaging of the nucleus with the Planetary Camera of the HST undertaken in order to search for the counterpart to X-8. The nucleus is bluer and more compact than at longer wavelength images but it is still extended with half of its 3e38 erg/s UV luminosity coming from the inner 0.14". We cannot distinguish between a concentrated blue population and emission from a single object.Comment: 3 figures, accepted for publication in ApJ Letter

    VHE observations of the gamma-ray binary system LS 5039 with H.E.S.S

    Full text link
    LS 5039 is a gamma-ray binary system observed in a broad energy range, from radio to TeV energies. The binary system exhibits both flux and spectral modulation as a function of its orbital period. The X-ray and very-high-energy (VHE, E > 100 GeV) gamma-ray fluxes display a maximum/minimum at inferior/superior conjunction, with spectra becoming respectively harder/softer, a behaviour that is completely reversed in the high-energy domain (HE, 0.1 < E < 100 GeV). The HE spectrum cuts off at a few GeV, with a new hard component emerging at E > 10 GeV that is compatible with the low-energy tail of the TeV emission. The low 10 - 100 GeV flux, however, makes the HE and VHE components difficult to reconcile with a scenario including emission from only a single particle population. We report on new observations of LS 5039 conducted with the High Energy Stereoscopic System (H.E.S.S.) telescopes from 2006 to 2015. This new data set enables for an unprecedentedly-deep phase-folded coverage of the source at TeV energies, as well as an extension of the VHE spectral range down to ~120 GeV, which makes LS 5039 the first gamma-ray binary system in which a spectral overlap between satellite and ground-based gamma-ray observatories is obtained.Comment: Proceeding for ICRC 201

    Long Term X-ray Monitoring Of The TeV Binary LS I +61 303 with RXTE

    Full text link
    We report on the results of a long term X-ray monitoring campaign of the galactic binary LS I +61 303 performed by the Rossi X-ray Timing Explorer. This dataset consists of 1 ks pointings taken every other day between 2007 August 28 until 2008 February 2. The observations covered six full cycles of the 26.496 day binary period and constitute the largest continuous X-ray monitoring dataset on LS I +61 303 to date with this sensitivity. There is no statistically strong detection of modulation of flux or photon index with orbital phase; however, we do find a strong correlation between flux and photon index, with the spectrum becoming harder at higher fluxes. The dataset contains three large flaring episodes, the largest of these reaching a flux level of 7.2 (+0.1,-0.2)*10^-11 erg cm^-2 s^-1 in the 3-10 keV band, which is a factor of three times larger than flux levels typically seen in the system. Analysis of these flares shows the X-ray emission from LS I +61 303 changing by up to a factor of six over timescales of several hundred seconds as well as doubling times as fast as 2 seconds. This is the fastest variability ever observed from LS I +61 303 at this wavelength and places constraints on the size of the X-ray emitting region.Comment: 24 pages, 7 figures, 2 tables. Accepted for publication in Ap

    An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data

    Get PDF
    Classical approaches to the calculation of the photovoltaic (PV) power generated in a region from meteorological data require the knowledge of the detailed characteristics of the plants, which are most often not publicly available. An approach is proposed with the objective to obtain the best possible assessment of power generated in any region without having to collect detailed information on PV plants. The proposed approach is based on a model of PV plant coupled with a statistical distribution of the prominent characteristics of the configuration of the plant and is tested over Europe. The generated PV power is first calculated for each of the plant configurations frequently found in a given region and then aggregated taking into account the probability of occurrence of each configuration. A statistical distribution has been constructed from detailed information obtained for several thousands of PV plants representing approximately 2 % of the total number of PV plants in Germany and was then adapted to other European countries by taking into account changes in the optimal PV tilt angle as a function of the latitude and meteorological conditions. The model has been run with bias-adjusted ERA-interim data as meteorological inputs. The results have been compared to estimates of the total PV power generated in two countries: France and Germany, as provided by the corresponding transmission system operators. Relative RMSE of 4.2 and 3.8 % and relative biases of −2.4 and 0.1 % were found with three-hourly data for France and Germany. A validation against estimates of the country-wide PV-power generation provided by the ENTSO-E for 16 European countries has also been conducted. This evaluation is made difficult by the uncertainty on the installed capacity corresponding to the ENTSO-E data but it nevertheless allows demonstrating that the model output and TSO data are highly correlated in most countries. Given the simplicity of the proposed approach these results are very encouraging. The approach is particularly suited to climatic timescales, both historical and future climates, as demonstrated here

    Spiral-wave-driven accretion in quiescent dwarf nov{\ae}

    Full text link
    In dwarf nov{\ae} and low-mass X-ray binaries, the tidal potential excites spiral waves in the accretion disc. Spiral wave driven accretion may be important in quiescent discs, where the angular momentum transport mechanism has yet to be identified. Previous studies were limited to unrealistically high temperatures for numerical studies or to specific regimes for analytical studies. We perform the first numerical simulation of spiral wave driven accretion in the cold temperature regime appropriate to quiescent discs, which have Mach numbers > 100. We use the new GPU-accelerated finite volume code Idefix to produce global hydrodynamics 2D simulations of the accretion discs of dwarf nov{\ae} systems with a fine-enough spatial resolution to capture the short scale-height of cold, quiescent discs with Mach numbers ranging from 80 to 370. Running the simulations on timescales of tens of binary orbits shows transient angular momentum transport that decays as the disc relaxes from its initial conditions. We find the angular momentum parameter {\alpha} drops to values << 0.01 , too weak to drive accretion in quiescence

    Hierarchical meta-porous materials as sound absorbers

    Full text link
    The absorption of sound has great significance in many scientific and engineering applications, from room acoustics to noise mitigation. In this context, porous materials have emerged as a viable solution towards high absorption performance and lightweight designs. However, their performance is somehow limited in the low frequency regime. Inspired by the concept of recursive patterns over multiple length scales typical of many natural materials, here, we propose a hierarchical organization of multilayered porous media and investigate their performance in terms of sound absorption. Two types of designs are investigated: a hierarchical periodic and a hierarchical gradient. In both cases it is found that the introduction of multiple levels of hierarchy allows to simultaneously (i) increase the level of absorption compared to the corresponding bulk block of porous material, along with (ii) a reduction of the quantity of porous material required. Both the cases of normal and oblique incidences are examined. The methodological approach is based on the transfer matrix method, optimization algorithms (metaheuristic Greedy Randomized Adaptive Search Procedure), and finite element calculations. An excellent agreement is found between the analytical and the numerical simulations

    The disc instability model for X-ray transients: evidence for truncation and irradiation

    Get PDF
    We study the prospect of explaining the outbursts of Soft X-ray Transients (SXTs) by the thermal-viscous instability in a thin disc. This instability is linked to hydrogen ionization and is significantly changed when irradiation of the disc by X-rays from the inner regions is included. We present the first numerically reliable, physically consistent calculations of the outburst cycles which include the effects of accretion disc irradiation. The decay from outburst is governed by irradiation, as pointed out by King & Ritter (1998), leading to slow exponential decays. At the end of the outburst, the disc is severely depleted, which lengthens the time needed to rebuild mass to the critical density for an outburst. Despite this, the long recurrence times and quiescent X-ray luminosities of SXTs still require the inner disc to be replaced by another type of flow in quiescence, presumably a hot advection dominated accretion flow (ADAF). We include the effects of such truncation and show that the resulting lightcurves are conclusively similar to those of SXTs like A0620-00. We conclude that the two-alpha disc instability model provides an adequate description of the outbursts of SXTs when both truncation and irradiation are included. The values for the viscosities in outburst and in quiescence are comparable to those used in CVs. We discuss the model in the context of present observations
    • 

    corecore