324 research outputs found
Growth of Inclined GaAs Nanowires by Molecular Beam Epitaxy: Theory and Experiment
The growth of inclined GaAs nanowires (NWs) during molecular beam epitaxy (MBE) on the rotating substrates is studied. The growth model provides explicitly the NW length as a function of radius, supersaturations, diffusion lengths and the tilt angle. Growth experiments are carried out on the GaAs(211)A and GaAs(111)B substrates. It is found that 20° inclined NWs are two times longer in average, which is explained by a larger impingement rate on their sidewalls. We find that the effective diffusion length at 550°C amounts to 12 nm for the surface adatoms and is more than 5,000 nm for the sidewall adatoms. Supersaturations of surface and sidewall adatoms are also estimated. The obtained results show the importance of sidewall adatoms in the MBE growth of NWs, neglected in a number of earlier studies
Growth of self-catalyzed inas/insb axial heterostructured nanowires: Experiment and theory
The growth mechanisms of self-catalyzed InAs/InSb axial nanowire heterostructures are thoroughly investigated as a function of the In and Sb line pressures and growth time. Some interesting phenomena are observed and analyzed. In particular, the presence of In droplet on top of InSb segment is shown to be essential for forming axial heterostructures in the self-catalyzed vapor-liquid-solid mode. Axial versus radial growth rates of InSb segment are investigated under different growth conditions and described within a dedicated model containing no free parameters. It is shown that widening of InSb segment with respect to InAs stem is controlled by the vapor-solid growth on the nanowire sidewalls rather than by the droplet swelling. The In droplet can even shrink smaller than the nanowire facet under Sb-rich conditions. These results shed more light on the growth mechanisms of self-catalyzed heterostructures and give clear route for engineering the morphology of InAs/InSb axial nanowire heterostructures for different applications
Magnetic-field-dependent zero-bias diffusive anomaly in Pb oxide-n-InAs structures: Coexistence of two- and three-dimensional states
The results of experimental and theoretical studies of zero-bias anomaly
(ZBA) in the Pb-oxide-n-InAs tunnel structures in magnetic field up to 6T are
presented. A specific feature of the structures is a coexistence of the 2D and
3D states at the Fermi energy near the semiconductor surface. The dependence of
the measured ZBA amplitude on the strength and orientation of the applied
magnetic field is in agreement with the proposed theoretical model. According
to this model, electrons tunnel into 2D states, and move diffusively in the 2D
layer, whereas the main contribution to the screening comes from 3D electrons.Comment: 8 double-column pages, REVTeX, 9 eps figures embedded with epsf,
published versio
Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K
Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of
the quasi-two dimensional charge transfer salt
"-(ET)(HO)[Fe(CO)]CHCl have been
investigated in pulsed magnetic fields up to 54 T. The data reveal three basic
frequencies F, F and F, which can be interpreted on the basis
of three compensated closed orbits at low temperature. However a very weak
thermal damping of the Fourier component F, with the highest amplitude, is
evidenced for SdH spectra above about 6 K. As a result, magnetoresistance
oscillations are observed at temperatures higher than 30 K. This feature, which
is not observed for dHvA oscillations, is in line with quantum interference,
pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009
- …