11 research outputs found

    Mode of action of β-aminobutyric acid in grapevine : an inducer of resistance to pathogens and Mechanisms involved in the susceptibility to pathogens of the Arabidopsis PAD2 mutant impaired in glutathione production

    No full text
    La compréhension des mécanismes de défense mis en place lors de la résistance des plantes vis-à-vis d'agents pathogènes a pour objectif de proposer des alternatives à l'utilisation de produits phytosanitaires utilisés en agriculture. Dans une première partie, nous avons étudié les mécanismes moléculaires impliqués dans la résistance induite aux pathogènes par l'acide β-aminobutyrique (BABA) chez la vigne. En effet, cet acide aminé non protéique favorise un état physiologique particulier, appelé potentialisation, dans lequel la plante est capable de mobiliser plus rapidement et/ou plus intensément ses réactions de défense en réponse à un stress. Contrairement aux éliciteurs comme les oligogalacturonates (OG), nous avons montré que le BABA seul n’induisait pas les événements précoces de signalisation sur suspensions cellulaires de vigne, tels que les variations de la concentration en calcium cytosolique libre ([Ca2+]cyt), la production de monoxyde d’azote (NO), la production d’H2O2, la phosphorylation de MAPkinases, ni l’expression de gènes de défense. Seules la production d’H2O2 et l’expression plus intense du gène RbohD codant une NADPH oxydase sont potentialisées par le BABA dans les suspensions cellulaires élicitées par les OG. In planta, le BABA potentialise également une production d’H2O2 en réponse à l’infection par l’oomycète Plasmopara viticola. L’utilisation d’un inhibiteur de NADPH oxydase abolit complètement cette production d’H2O2 et bloque partiellement la résistance induite par le BABA. Nous montrons donc que la potentialisation de la production d’H2O2 dépendante d’une NADPH oxydase contribue à l’établissement de la résistance induite par le BABA chez la vigne. Une deuxième partie a permis d’appréhender les événements cellulaires impliqués dans la résistance des plantes en se focalisant sur le mutant pad2 (phytoalexin deficient) d’Arabidopsis thaliana. Ce mutant présente une sensibilité accrue à différents pathogènes et contient un taux de glutathion de l’ordre de 20 % par rapport à l’écotype sauvage. Nous avons tout d’abord montré que le faible taux de glutathion dépendait d’une quantité réduite de la première enzyme de sa biosynthèse, la glutamate-cystéine ligase. Le glutathion étant impliqué dans la mise en place des réactions de défense, nous avons tenté de définir le lien entre la déficience en glutathion et la sensibilité de pad2 aux pathogènes. Nous avons tout d’abord montré que pad2 possédait un état redox du glutathion plus oxydé que le sauvage. Une analyse transcriptomique à l’état basal a révélé que la plupart des gènes différentiellement exprimés étaient réprimés chez pad2. Parmi ces gènes, certains codent des protéines impliquées dans les flux d’ions qui pourraient déréguler la dépolarisation membranaire. Nous avons ainsi confirmé que la dépolarisation de la membrane plasmique est amoindrie chez pad2 en réponse aux OG. De plus, des événements en aval tels que la production d’H2O2 et la production de NO sont également plus faibles chez le mutant par rapport au sauvage. Cette absence de la production d’H2O2 a également été spécifiquement observée sur plantes pad2 infectées par l’oomycète Phytophthora brassicae. Il en résulte un développement accru du pathogène corrélé à une absence de réponse hypersensible, une mort cellulaire localisée normalement observée dans le cas du sauvage résistant. En réponse aux OG ou à l’infection par P. brassicae, les analyses transcriptomiques font ressortir un fort enrichissement de gènes relatifs à la dégradation des protéines chez pad2. De manière globale, nos résultats suggèrent que la déficience en glutathion chez pad2 pourrait profondément modifier le turn-over des protéines, perturbant ainsi la signalisation cellulaire et les réponses biologiques associées.Alternative strategies are required to reduce pesticide input into the environment for effective and sustainable plant protection. One solution is the activation of plant basal resistance that relies on the application of resistance inducer molecules. In the first part of this study, we analyzed the mode of action of β-aminobutyric acid (BABA), a non-protein amino acid, in the grapevine induced resistance. BABA confers a physiological state, called priming, during which plants are able to mobilize better and/or more rapidly defense responses to biotic or abiotic stress. Unlike oligogalacturonides (OG), we showed that BABA did not induce early signaling events in grapevine cells such as variations of cytosolic free calcium concentration, H2O2 and nitric oxide production, MAPkinase phosphorylation, nor the expression of defense-related genes. Among them, only H2O2 production and the expression of RbohD gene, which encodes a NADPH oxidase, are primed by BABA in OG-treated cells. Moreover, BABA-treated plants display a stronger accumulation of H2O2 in response to the oomycete Plasmopara viticola. Application of an NADPH oxidase inhibitor completely abolishes this H2O2 production and leads to a reduction of BABA-induced resistance against P. viticola. These data suggest that the priming of an NADPH oxidase-dependent H2O2 production contributes to BABA-induced resistance in grapevine. The second part consisted to analyze molecular events involved in plant resistance by using the pad2 (phytoalexin deficient) mutant of Arabidopsis thaliana which is susceptible to a broad range of pathogens. We showed that the glutathione depletion depends on the low amount of glutamate-cysteine ligase protein, the first enzyme involved in its biosynthesis. We studied molecular events, which are involved in defense mechanisms, to understand the impact of the glutathione content on pad2 susceptibility. Our results show that the redox state of glutathione is more oxidized in pad2 than in wild type Col-0. Since cellular redox state change is known to regulate gene expression, a basal transcriptome analysis has been performed in pad2 and wild type plants. Interestingly, most of the identified genes in pad2 are down-regulated, some of them encoding proteins involved in ion fluxes. As expected, the plasma membrane depolarization and events downstream like H2O2 and NO production are impaired in pad2 in response to OG. During infection with Phytophthora brassicae, the lack of H2O2 production is concomitant with an absence of the hypersensitive response, a localize cell death observed in the resistant wild type. After OG treatment or P. brassicae infection, microarray analysis brings out genes related to protein machinery including degradation in pad2. Taken together, these data suggest that the depletion of glutathione has an impact on protein turn-over which disturbs cell signaling events and related biological responses

    Mode d'action de l'acide ß-aminobutirique chez la vigne : un inducteur de résistance aux pathogènes et étude des mécanismes impliqués dans la sensibilité aux pathogènes du mutant PAD2 d'arabidopsis déficient en glutathion

    No full text
    Alternative strategies are required to reduce pesticide input into the environment for effective and sustainable plant protection. One solution is the activation of plant basal resistance that relies on the application of resistance inducer molecules. In the first part of this study, we analyzed the mode of action of β-aminobutyric acid (BABA), a non-protein amino acid, in the grapevine induced resistance. BABA confers a physiological state, called priming, during which plants are able to mobilize better and/or more rapidly defense responses to biotic or abiotic stress. Unlike oligogalacturonides (OG), we showed that BABA did not induce early signaling events in grapevine cells such as variations of cytosolic free calcium concentration, H2O2 and nitric oxide production, MAPkinase phosphorylation, nor the expression of defense-related genes. Among them, only H2O2 production and the expression of RbohD gene, which encodes a NADPH oxidase, are primed by BABA in OG-treated cells. Moreover, BABA-treated plants display a stronger accumulation of H2O2 in response to the oomycete Plasmopara viticola. Application of an NADPH oxidase inhibitor completely abolishes this H2O2 production and leads to a reduction of BABA-induced resistance against P. viticola. These data suggest that the priming of an NADPH oxidase-dependent H2O2 production contributes to BABA-induced resistance in grapevine. The second part consisted to analyze molecular events involved in plant resistance by using the pad2 (phytoalexin deficient) mutant of Arabidopsis thaliana which is susceptible to a broad range of pathogens. We showed that the glutathione depletion depends on the low amount of glutamate-cysteine ligase protein, the first enzyme involved in its biosynthesis. We studied molecular events, which are involved in defense mechanisms, to understand the impact of the glutathione content on pad2 susceptibility. Our results show that the redox state of glutathione is more oxidized in pad2 than in wild type Col-0. Since cellular redox state change is known to regulate gene expression, a basal transcriptome analysis has been performed in pad2 and wild type plants. Interestingly, most of the identified genes in pad2 are down-regulated, some of them encoding proteins involved in ion fluxes. As expected, the plasma membrane depolarization and events downstream like H2O2 and NO production are impaired in pad2 in response to OG. During infection with Phytophthora brassicae, the lack of H2O2 production is concomitant with an absence of the hypersensitive response, a localize cell death observed in the resistant wild type. After OG treatment or P. brassicae infection, microarray analysis brings out genes related to protein machinery including degradation in pad2. Taken together, these data suggest that the depletion of glutathione has an impact on protein turn-over which disturbs cell signaling events and related biological responses.La compréhension des mécanismes de défense mis en place lors de la résistance des plantes vis-à-vis d'agents pathogènes a pour objectif de proposer des alternatives à l'utilisation de produits phytosanitaires utilisés en agriculture. Dans une première partie, nous avons étudié les mécanismes moléculaires impliqués dans la résistance induite aux pathogènes par l'acide β-aminobutyrique (BABA) chez la vigne. En effet, cet acide aminé non protéique favorise un état physiologique particulier, appelé potentialisation, dans lequel la plante est capable de mobiliser plus rapidement et/ou plus intensément ses réactions de défense en réponse à un stress. Contrairement aux éliciteurs comme les oligogalacturonates (OG), nous avons montré que le BABA seul n’induisait pas les événements précoces de signalisation sur suspensions cellulaires de vigne, tels que les variations de la concentration en calcium cytosolique libre ([Ca2+]cyt), la production de monoxyde d’azote (NO), la production d’H2O2, la phosphorylation de MAPkinases, ni l’expression de gènes de défense. Seules la production d’H2O2 et l’expression plus intense du gène RbohD codant une NADPH oxydase sont potentialisées par le BABA dans les suspensions cellulaires élicitées par les OG. In planta, le BABA potentialise également une production d’H2O2 en réponse à l’infection par l’oomycète Plasmopara viticola. L’utilisation d’un inhibiteur de NADPH oxydase abolit complètement cette production d’H2O2 et bloque partiellement la résistance induite par le BABA. Nous montrons donc que la potentialisation de la production d’H2O2 dépendante d’une NADPH oxydase contribue à l’établissement de la résistance induite par le BABA chez la vigne. Une deuxième partie a permis d’appréhender les événements cellulaires impliqués dans la résistance des plantes en se focalisant sur le mutant pad2 (phytoalexin deficient) d’Arabidopsis thaliana. Ce mutant présente une sensibilité accrue à différents pathogènes et contient un taux de glutathion de l’ordre de 20 % par rapport à l’écotype sauvage. Nous avons tout d’abord montré que le faible taux de glutathion dépendait d’une quantité réduite de la première enzyme de sa biosynthèse, la glutamate-cystéine ligase. Le glutathion étant impliqué dans la mise en place des réactions de défense, nous avons tenté de définir le lien entre la déficience en glutathion et la sensibilité de pad2 aux pathogènes. Nous avons tout d’abord montré que pad2 possédait un état redox du glutathion plus oxydé que le sauvage. Une analyse transcriptomique à l’état basal a révélé que la plupart des gènes différentiellement exprimés étaient réprimés chez pad2. Parmi ces gènes, certains codent des protéines impliquées dans les flux d’ions qui pourraient déréguler la dépolarisation membranaire. Nous avons ainsi confirmé que la dépolarisation de la membrane plasmique est amoindrie chez pad2 en réponse aux OG. De plus, des événements en aval tels que la production d’H2O2 et la production de NO sont également plus faibles chez le mutant par rapport au sauvage. Cette absence de la production d’H2O2 a également été spécifiquement observée sur plantes pad2 infectées par l’oomycète Phytophthora brassicae. Il en résulte un développement accru du pathogène corrélé à une absence de réponse hypersensible, une mort cellulaire localisée normalement observée dans le cas du sauvage résistant. En réponse aux OG ou à l’infection par P. brassicae, les analyses transcriptomiques font ressortir un fort enrichissement de gènes relatifs à la dégradation des protéines chez pad2. De manière globale, nos résultats suggèrent que la déficience en glutathion chez pad2 pourrait profondément modifier le turn-over des protéines, perturbant ainsi la signalisation cellulaire et les réponses biologiques associées

    Mode d'action de l'acide ß-aminobutirique chez la vigne : un inducteur de résistance aux pathogènes et étude des mécanismes impliqués dans la sensibilité aux pathogènes du mutant PAD2 d'arabidopsis déficient en glutathion

    No full text
    Alternative strategies are required to reduce pesticide input into the environment for effective and sustainable plant protection. One solution is the activation of plant basal resistance that relies on the application of resistance inducer molecules. In the first part of this study, we analyzed the mode of action of β-aminobutyric acid (BABA), a non-protein amino acid, in the grapevine induced resistance. BABA confers a physiological state, called priming, during which plants are able to mobilize better and/or more rapidly defense responses to biotic or abiotic stress. Unlike oligogalacturonides (OG), we showed that BABA did not induce early signaling events in grapevine cells such as variations of cytosolic free calcium concentration, H2O2 and nitric oxide production, MAPkinase phosphorylation, nor the expression of defense-related genes. Among them, only H2O2 production and the expression of RbohD gene, which encodes a NADPH oxidase, are primed by BABA in OG-treated cells. Moreover, BABA-treated plants display a stronger accumulation of H2O2 in response to the oomycete Plasmopara viticola. Application of an NADPH oxidase inhibitor completely abolishes this H2O2 production and leads to a reduction of BABA-induced resistance against P. viticola. These data suggest that the priming of an NADPH oxidase-dependent H2O2 production contributes to BABA-induced resistance in grapevine. The second part consisted to analyze molecular events involved in plant resistance by using the pad2 (phytoalexin deficient) mutant of Arabidopsis thaliana which is susceptible to a broad range of pathogens. We showed that the glutathione depletion depends on the low amount of glutamate-cysteine ligase protein, the first enzyme involved in its biosynthesis. We studied molecular events, which are involved in defense mechanisms, to understand the impact of the glutathione content on pad2 susceptibility. Our results show that the redox state of glutathione is more oxidized in pad2 than in wild type Col-0. Since cellular redox state change is known to regulate gene expression, a basal transcriptome analysis has been performed in pad2 and wild type plants. Interestingly, most of the identified genes in pad2 are down-regulated, some of them encoding proteins involved in ion fluxes. As expected, the plasma membrane depolarization and events downstream like H2O2 and NO production are impaired in pad2 in response to OG. During infection with Phytophthora brassicae, the lack of H2O2 production is concomitant with an absence of the hypersensitive response, a localize cell death observed in the resistant wild type. After OG treatment or P. brassicae infection, microarray analysis brings out genes related to protein machinery including degradation in pad2. Taken together, these data suggest that the depletion of glutathione has an impact on protein turn-over which disturbs cell signaling events and related biological responses.La compréhension des mécanismes de défense mis en place lors de la résistance des plantes vis-à-vis d'agents pathogènes a pour objectif de proposer des alternatives à l'utilisation de produits phytosanitaires utilisés en agriculture. Dans une première partie, nous avons étudié les mécanismes moléculaires impliqués dans la résistance induite aux pathogènes par l'acide β-aminobutyrique (BABA) chez la vigne. En effet, cet acide aminé non protéique favorise un état physiologique particulier, appelé potentialisation, dans lequel la plante est capable de mobiliser plus rapidement et/ou plus intensément ses réactions de défense en réponse à un stress. Contrairement aux éliciteurs comme les oligogalacturonates (OG), nous avons montré que le BABA seul n’induisait pas les événements précoces de signalisation sur suspensions cellulaires de vigne, tels que les variations de la concentration en calcium cytosolique libre ([Ca2+]cyt), la production de monoxyde d’azote (NO), la production d’H2O2, la phosphorylation de MAPkinases, ni l’expression de gènes de défense. Seules la production d’H2O2 et l’expression plus intense du gène RbohD codant une NADPH oxydase sont potentialisées par le BABA dans les suspensions cellulaires élicitées par les OG. In planta, le BABA potentialise également une production d’H2O2 en réponse à l’infection par l’oomycète Plasmopara viticola. L’utilisation d’un inhibiteur de NADPH oxydase abolit complètement cette production d’H2O2 et bloque partiellement la résistance induite par le BABA. Nous montrons donc que la potentialisation de la production d’H2O2 dépendante d’une NADPH oxydase contribue à l’établissement de la résistance induite par le BABA chez la vigne. Une deuxième partie a permis d’appréhender les événements cellulaires impliqués dans la résistance des plantes en se focalisant sur le mutant pad2 (phytoalexin deficient) d’Arabidopsis thaliana. Ce mutant présente une sensibilité accrue à différents pathogènes et contient un taux de glutathion de l’ordre de 20 % par rapport à l’écotype sauvage. Nous avons tout d’abord montré que le faible taux de glutathion dépendait d’une quantité réduite de la première enzyme de sa biosynthèse, la glutamate-cystéine ligase. Le glutathion étant impliqué dans la mise en place des réactions de défense, nous avons tenté de définir le lien entre la déficience en glutathion et la sensibilité de pad2 aux pathogènes. Nous avons tout d’abord montré que pad2 possédait un état redox du glutathion plus oxydé que le sauvage. Une analyse transcriptomique à l’état basal a révélé que la plupart des gènes différentiellement exprimés étaient réprimés chez pad2. Parmi ces gènes, certains codent des protéines impliquées dans les flux d’ions qui pourraient déréguler la dépolarisation membranaire. Nous avons ainsi confirmé que la dépolarisation de la membrane plasmique est amoindrie chez pad2 en réponse aux OG. De plus, des événements en aval tels que la production d’H2O2 et la production de NO sont également plus faibles chez le mutant par rapport au sauvage. Cette absence de la production d’H2O2 a également été spécifiquement observée sur plantes pad2 infectées par l’oomycète Phytophthora brassicae. Il en résulte un développement accru du pathogène corrélé à une absence de réponse hypersensible, une mort cellulaire localisée normalement observée dans le cas du sauvage résistant. En réponse aux OG ou à l’infection par P. brassicae, les analyses transcriptomiques font ressortir un fort enrichissement de gènes relatifs à la dégradation des protéines chez pad2. De manière globale, nos résultats suggèrent que la déficience en glutathion chez pad2 pourrait profondément modifier le turn-over des protéines, perturbant ainsi la signalisation cellulaire et les réponses biologiques associées

    Role of glutathione in plant signaling under biotic stress

    No full text
    International audienceGlutathione (GSH) is a non-protein thiol compound which has been repeatedly reported to play an important role in plant responses during biotic stresses. However, our knowledge of glutathione-related molecular mechanisms underlying plant defense responses still remains limited. We first discovered that the Arabidopsis thaliana phytoalexin deficient 2-1 (pad2-1) mutant was linked to glutathione deficiency since the mutation was identified in the GSH1 gene encoding the first enzyme of glutathione biosynthesis: Glutamate Cysteine Ligase (GCL). Interestingly, this glutathione-deficient mutant pad2-1 also displays a high susceptibility to a wide range of invaders. We recently reported that the glutathione deficiency in pad2-1 is directly related to a low content of GCL protein. In parallel, we highlighted that the altered redox potential in pad2-1 upregulates the oxidative-stress marker genes GR1, GSTF6 and RbohD during infection with the hemibiotrophic oomycete Phytophthora brassicae. Moreover, the impairment of early signaling events such as plasma membrane depolarization, production of nitric oxide and reactive oxygen species also correlates with the reduced hypersensitive response (HR) observed during P. brassicae infection. Concerning the impaired salicylic acid (SA)-dependent pathway in pad2-1, our results indicated that transcripts of IsoChorismate Synthase1 (ICS1, a main enzyme of SA biosynthesis) do not accumulate in response to pathogen. In this review, we integrate previous knowledge and recent discoveries about pad2-1 to better understand the involvement of glutathione in the pad2-1 pleiotropic phenotype observed during biotic stresse

    Mode d'action de l'acide ß-aminobutirique chez la vigne (un inducteur de résistance aux pathogènes et étude des mécanismes impliqués dans la sensibilité aux pathogènes du mutant PAD2 d'arabidopsis déficient en glutathion)

    No full text
    La compréhension des mécanismes de défense mis en place lors de la résistance des plantes vis-à-vis d'agents pathogènes a pour objectif de proposer des alternatives à l'utilisation de produits phytosanitaires utilisés en agriculture. Dans une première partie, nous avons étudié les mécanismes moléculaires impliqués dans la résistance induite aux pathogènes par l'acide b-aminobutyrique (BABA) chez la vigne. En effet, cet acide aminé non protéique favorise un état physiologique particulier, appelé potentialisation, dans lequel la plante est capable de mobiliser plus rapidement et/ou plus intensément ses réactions de défense en réponse à un stress. Contrairement aux éliciteurs comme les oligogalacturonates (OG), nous avons montré que le BABA seul n induisait pas les événements précoces de signalisation sur suspensions cellulaires de vigne, tels que les variations de la concentration en calcium cytosolique libre ([Ca2+]cyt), la production de monoxyde d azote (NO), la production d H2O2, la phosphorylation de MAPkinases, ni l expression de gènes de défense. Seules la production d H2O2 et l expression plus intense du gène RbohD codant une NADPH oxydase sont potentialisées par le BABA dans les suspensions cellulaires élicitées par les OG. In planta, le BABA potentialise également une production d H2O2 en réponse à l infection par l oomycète Plasmopara viticola. L utilisation d un inhibiteur de NADPH oxydase abolit complètement cette production d H2O2 et bloque partiellement la résistance induite par le BABA. Nous montrons donc que la potentialisation de la production d H2O2 dépendante d une NADPH oxydase contribue à l établissement de la résistance induite par le BABA chez la vigne. Une deuxième partie a permis d appréhender les événements cellulaires impliqués dans la résistance des plantes en se focalisant sur le mutant pad2 (phytoalexin deficient) d Arabidopsis thaliana. Ce mutant présente une sensibilité accrue à différents pathogènes et contient un taux de glutathion de l ordre de 20 % par rapport à l écotype sauvage. Nous avons tout d abord montré que le faible taux de glutathion dépendait d une quantité réduite de la première enzyme de sa biosynthèse, la glutamate-cystéine ligase. Le glutathion étant impliqué dans la mise en place des réactions de défense, nous avons tenté de définir le lien entre la déficience en glutathion et la sensibilité de pad2 aux pathogènes. Nous avons tout d abord montré que pad2 possédait un état redox du glutathion plus oxydé que le sauvage. Une analyse transcriptomique à l état basal a révélé que la plupart des gènes différentiellement exprimés étaient réprimés chez pad2. Parmi ces gènes, certains codent des protéines impliquées dans les flux d ions qui pourraient déréguler la dépolarisation membranaire. Nous avons ainsi confirmé que la dépolarisation de la membrane plasmique est amoindrie chez pad2 en réponse aux OG. De plus, des événements en aval tels que la production d H2O2 et la production de NO sont également plus faibles chez le mutant par rapport au sauvage. Cette absence de la production d H2O2 a également été spécifiquement observée sur plantes pad2 infectées par l oomycète Phytophthora brassicae. Il en résulte un développement accru du pathogène corrélé à une absence de réponse hypersensible, une mort cellulaire localisée normalement observée dans le cas du sauvage résistant. En réponse aux OG ou à l infection par P. brassicae, les analyses transcriptomiques font ressortir un fort enrichissement de gènes relatifs à la dégradation des protéines chez pad2. De manière globale, nos résultats suggèrent que la déficience en glutathion chez pad2 pourrait profondément modifier le turn-over des protéines, perturbant ainsi la signalisation cellulaire et les réponses biologiques associées.Alternative strategies are required to reduce pesticide input into the environment for effective and sustainable plant protection. One solution is the activation of plant basal resistance that relies on the application of resistance inducer molecules. In the first part of this study, we analyzed the mode of action of b-aminobutyric acid (BABA), a non-protein amino acid, in the grapevine induced resistance. BABA confers a physiological state, called priming, during which plants are able to mobilize better and/or more rapidly defense responses to biotic or abiotic stress. Unlike oligogalacturonides (OG), we showed that BABA did not induce early signaling events in grapevine cells such as variations of cytosolic free calcium concentration, H2O2 and nitric oxide production, MAPkinase phosphorylation, nor the expression of defense-related genes. Among them, only H2O2 production and the expression of RbohD gene, which encodes a NADPH oxidase, are primed by BABA in OG-treated cells. Moreover, BABA-treated plants display a stronger accumulation of H2O2 in response to the oomycete Plasmopara viticola. Application of an NADPH oxidase inhibitor completely abolishes this H2O2 production and leads to a reduction of BABA-induced resistance against P. viticola. These data suggest that the priming of an NADPH oxidase-dependent H2O2 production contributes to BABA-induced resistance in grapevine. The second part consisted to analyze molecular events involved in plant resistance by using the pad2 (phytoalexin deficient) mutant of Arabidopsis thaliana which is susceptible to a broad range of pathogens. We showed that the glutathione depletion depends on the low amount of glutamate-cysteine ligase protein, the first enzyme involved in its biosynthesis. We studied molecular events, which are involved in defense mechanisms, to understand the impact of the glutathione content on pad2 susceptibility. Our results show that the redox state of glutathione is more oxidized in pad2 than in wild type Col-0. Since cellular redox state change is known to regulate gene expression, a basal transcriptome analysis has been performed in pad2 and wild type plants. Interestingly, most of the identified genes in pad2 are down-regulated, some of them encoding proteins involved in ion fluxes. As expected, the plasma membrane depolarization and events downstream like H2O2 and NO production are impaired in pad2 in response to OG. During infection with Phytophthora brassicae, the lack of H2O2 production is concomitant with an absence of the hypersensitive response, a localize cell death observed in the resistant wild type. After OG treatment or P. brassicae infection, microarray analysis brings out genes related to protein machinery including degradation in pad2. Taken together, these data suggest that the depletion of glutathione has an impact on protein turn-over which disturbs cell signaling events and related biological responses.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    β-aminobutyric acid primes a NADPH oxidase-dependent reactive oxygen species production during grapevine triggered immunity

    No full text
    International audienceThe molecular mechanisms underlying the process of priming are poorly understood. In the present study, we investigated the early signaling events triggered by β-aminobutyric acid (BABA), a well-known priming-mediated plant resistance inducer. Our results indicate that, in contrast to oligogalacturonides (OG), BABA does not elicit typical defense-related early signaling events nor defense-gene expression in grapevine. However, in OG-elicited cells pretreated with BABA, production of reactive oxygen species (ROS) and expression of the respiratory-burst oxidase homolog RbohD gene were primed. In response to the causal agent of downy mildew Plasmopara viticola, a stronger ROS production was specifically observed in BABA-treated leaves. This process was correlated with an increased resistance. The NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished this primed ROS production and reduced the BABA-induced resistance (BABA-IR). These results suggest that priming of an NADPH oxidase–dependent ROS production contributes to BABA-IR in the Vitis-Plasmopara pathosystem

    Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response

    Get PDF
    The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amount. In contrast to the wild type, the oxidized form of GCL was dominant in pad2-1, suggesting a distinct redox environment. This finding was corroborated by the expression of GRX1-roGFP2, showing that the cytosolic glutathione redox potential was significantly less negative in pad2-1. Analysis of oxidative stress-related gene expression showed a higher transcript accumulation in pad2-1 of GLUTATHIONE REDUCTASE, GLUTATHIONE-S-TRANSFERASE, and RESPIRATORY BURST OXIDASE HOMOLOG D in response to the oomycete Phytophthora brassicae. Interestingly, oligogalacturonide elicitation in pad2-1 revealed a lower plasma membrane depolarization that was found to act upstream of an impaired hydrogen peroxide production. This impaired hydrogen peroxide production was also observed during pathogen infection and correlated with a reduced hypersensitive response in pad2-1. In addition, a lack of pathogen-triggered expression of the ISOCHORISMATE SYNTHASE1 gene, coding for the SA-biosynthetic enzyme isochorismate synthase, was identified as the cause of the SA deficiency in pad2-1. Together, our results indicate that the pad2-1 mutation is related to a decrease in GCL protein and that the resulting glutathione deficiency negatively affects important processes of disease resistance

    Current view of nitric oxide-responsive genes in plants

    No full text
    International audienceSignificant efforts have been directed towards the identification of genes differentially regulated through nitric oxide (NO)-dependent processes. These efforts comprise the use of medium- and large-scale transcriptomic analyses including microarray and cDNA-amplification fragment length polymorphism (AFLP) approaches. Numerous putative NO-responsive genes have been identified in plant tissues and cell suspensions with transcript levels altered by artificially released NO, or endogenously produced. Comparative analysis of the data from such transcriptomic analyses in Arabidopsis reveals that a significant part of these genes encode proteins related to plant adaptive responses to biotic and abiotic stresses. Putative common transcription factor-binding sites in the promoter of NO-regulated genes have been defined. The current challenge remains to validate the interpretations deduced from the transcriptomic analyses and to understand the molecular mechanisms underlying the NO-dependent modulation of the genes of interest. (C) 2009 Elsevier Ireland Ltd. All rights reserved
    corecore