4 research outputs found

    The stopping power and straggling of strongly coupled electron fluids revisited

    Get PDF
    Measuring energy losses of beams of charged particles is an important diagnostic tool in both modern condensed matter and plasma physics..

    Screened Effective Interaction Potential for Two-Component Plasmas

    Full text link
    The linear density response formalism is used to analytically obtain an effective pairwise interaction potential of charged particles that simultaneously takes into account quantum mechanical and quantum statistical effects in weakly and moderately non-ideal plasmas at thermal equilibrium. The static dielectric function is obtained by interpolating long - and short wavelength asymptotic forms of the dielectric function in the random-phase approximation. The exchange effects are neglected in the micropotential, while the quantum-statistical effects are accounted for in the screening. The effective potential constructed in such a way takes a finite value at the origin and proves to be screened at large distances. The thermodynamic properties of two-component plasmas are then calculated and comparison is made with some data available in the literature. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimArkhipov, YV.; Ashikbayeva, AB.; Askaruly, A.; Davletov, AE.; Dubovtsev, DY.; Tkachenko Gorski, IM. (2016). Screened Effective Interaction Potential for Two-Component Plasmas. Contributions to Plasma Physics. 56(5):403-410. doi:10.1002/ctpp.201500129S403410565Deutsch, C. (1977). Nodal expansion in a real matter plasma. Physics Letters A, 60(4), 317-318. doi:10.1016/0375-9601(77)90111-6Ebeling, W., Norman, G. E., Valuev, A. A., & Valuev, I. A. (1999). Quasiclassical Theory and Molecular Dynamics of Two-Component Nonideal Plasmas. Contributions to Plasma Physics, 39(1-2), 61-64. doi:10.1002/ctpp.2150390115Filinov, A. V., Bonitz, M., & Ebeling, W. (2003). Improved Kelbg potential for correlated Coulomb systems. Journal of Physics A: Mathematical and General, 36(22), 5957-5962. doi:10.1088/0305-4470/36/22/317Morozov, I., Reinholz, H., Röpke, G., Wierling, A., & Zwicknagel, G. (2005). Molecular dynamics simulations of optical conductivity of dense plasmas. Physical Review E, 71(6). doi:10.1103/physreve.71.066408Arkhipov, Y. V., & Davletov, A. E. (1998). Screened pseudopotential and static structure factors of semiclassical two-component plasmas. Physics Letters A, 247(4-5), 339-342. doi:10.1016/s0375-9601(98)00613-6Yu. V. Arkhipov F. B. Baimbetov A. E. Davletov K. V. Starikov Pseudopotential theory of dense hot plasmas (Qazaq Universiteti, Almaty, 2002), p. 115 (in Russian).S. Ichimaru Statistical Plasma Physics (Addison-Wesley, New York, 1991), Vol. 1.Moldabekov, Z., Schoof, T., Ludwig, P., Bonitz, M., & Ramazanov, T. (2015). Statically screened ion potential and Bohm potential in a quantum plasma. Physics of Plasmas, 22(10), 102104. doi:10.1063/1.4932051A. I. Akhiezer S. V. Peletminsky Methods of Statistical Physics. International Series in Natural Philosophy (Pergamon Press, Oxford, 1981), Vol. 104.Arista, N. R., & Brandt, W. (1984). Dielectric response of quantum plasmas in thermal equilibrium. Physical Review A, 29(3), 1471-1480. doi:10.1103/physreva.29.1471Arkhipov, Y. V., Askaruly, A., Davletov, A. E., Dubovtsev, D., … Yerimbetova, L. (2014). Interparticle interaction potential in two-component plasmas. Physical Sciences and Technology, 1(1), 55-59. doi:10.26577/phst-2014-1-14Arkhipov, Y. V., Baimbetov, F. B., Davletov, A. E., & Ramazanov, T. S. (1999). Equilibrium Properties of H-Plasma. Contributions to Plasma Physics, 39(6), 495-499. doi:10.1002/ctpp.2150390603Hansen, J. P., & McDonald, I. R. (1981). Microscopic simulation of a strongly coupled hydrogen plasma. Physical Review A, 23(4), 2041-2059. doi:10.1103/physreva.23.2041L. D. Landau E. M. Lifshitz Statistical Physics (Pergamon Press, Oxford, 1980).I. Z. Fisher Statistical Theory of Liquids (University of Chicago Press, Chicago, 1964), p. 335.Tanaka, S., Yan, X.-Z., & Ichimaru, S. (1990). Equation of state and conductivities of dense hydrogen plasmas near the metal-insulator transition. Physical Review A, 41(10), 5616-5625. doi:10.1103/physreva.41.5616Pierleoni, C., Ceperley, D. M., Bernu, B., & Magro, W. R. (1994). Equation of State of the Hydrogen Plasma by Path Integral Monte Carlo Simulation. Physical Review Letters, 73(16), 2145-2149. doi:10.1103/physrevlett.73.2145Chihara, J. (1991). Comment on ‘‘Equation of state and conductivities of dense hydrogen plasmas near the metal-insulator transition’’. Physical Review A, 44(12), 8446-8447. doi:10.1103/physreva.44.8446Ichimaru, S. (1991). Reply to ‘‘Comment on ‘Equation of state and conductivities of dense hydrogen plasmas near the metal-insulator transition’ ’’. Physical Review A, 44(12), 8448-8449. doi:10.1103/physreva.44.844

    Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas

    Get PDF
    [EN] Dynamic characteristics of strongly coupled classical one-component Coulomb and Yukawa plasmas are obtained within the nonperturbative model-free moment approach without any data input from simulations so that the dynamic structure factor (DSF) satisfies the first three nonvanishing sum rules automatically. The DSF, dispersion, decay, sound speed, and other characteristics of the collective modes are determined using exclusively the static structure factor calculated from various theoretical approaches including the hypernetted chain approximation. A good quantitative agreement with molecular dynamics simulation data is achieved.This research work was supported by Grants No. 0263/PTsF, No. 3119/GF4, No. 3120/GF4, and No. 3831/GF4 (Ministry of Education and Science, Kazakhstan), No. NKFIH 119357 and No. 115805 (National Research, Development and Innovation Fund, Hungary), the Jenos Bolyai Research Scholarship of the Hungarian Academy of Sciences (P.H.), Hungary, and Grant No. ESP2013-41078R (Ministerio de Economia y Competitividad, Spain). A.A. expresses gratitude for the financial support provided by the grant "The best lecturer of the Republic of Kazakhstan," and I.M.T. acknowledges the hospitality of the al-Farabi Kazakh National University and valuable discussions with M. Bonitz, I.L. Iosilevskiy, and Yu. A. Serebrennikov. Special thanks are due to Kh. Santybayev, who has helped us with the analysis of alternative approaches to the calculation of the SSF.Arkhipov, YV.; Askaruly, A.; Davletov, AE.; Dubovtsev, DY.; Donko, Z.; Hartmann, P.; Korolov, I.... (2017). Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas. Physical Review Letters. 119(4):045001-1-045001-6. https://doi.org/10.1103/PhysRevLett.119.045001S045001-1045001-6119
    corecore