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   Measuring energy losses of beams of charged 
particles is an important diagnostic tool in both 
modern condensed matter and plasma physics. If 
single-particle effects can be neglected, the gen-
eral expression for polarization losses [1] sim-
plifies as 
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Here Zpe and v are the projectile charge and ve-
locity, while 𝐿𝐿(𝑘𝑘, 𝜔𝜔) = −Im𝜀𝜀−1(𝑘𝑘, 𝜔𝜔)/𝜔𝜔 is the 
target plasma loss function, 𝜀𝜀(𝑘𝑘, 𝜔𝜔) being the 
system dielectric function (DF). Another im-
portant characteristic of energy loss by the 
beam of projectiles is the straggling:  
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Usually the polarizational stopping power and 
its straggling are calculated presuming the tar-
get plasma to be an electronic fluid and the DF 
of the latter has been evaluated within the ran-
dom-phase approximation (RPA), the T-matrix 
approach, the method of effective potentials, or 
using the Mermin or more sophisticated DF 
models, see [2] for the references. It has been 
shown recently in [2] that all these perturbative 
DF models, except for the local-field corrected 
RPA do not satisfy the interaction-related sum 
rules and thus cannot be applied for the calcula-
tion of the stopping power and its straggling 
under the conditions of strong coupling. The 
approach we suggest here is based on the 
method of moments. It is not perturbative and 
the only limitation is that the electron fluid is 
presumed to be in the liquid phase. The mo-
ments are effectively the power frequency of 
the loss function,  

𝐶𝐶𝜈𝜈(𝑘𝑘) = 1
𝜋𝜋 ∫ 𝜔𝜔𝜈𝜈𝐿𝐿

∞

−∞
(𝑘𝑘, 𝜔𝜔)𝑑𝑑𝑑𝑑,   𝜈𝜈 = 0,2,4 

and are the sum rules. The approach permits to 
apply the Nevanlinna formula of the classical 
method of moments and to model the system 
DF via the Nevanlinna parameter function 
(NPF) q(k,z) [3]: 
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where 𝜔𝜔1
2(𝑘𝑘) = 𝐶𝐶2 𝐶𝐶0⁄  and 𝜔𝜔2

2(𝑘𝑘) = 𝐶𝐶4 𝐶𝐶2⁄  and 
𝜔𝜔𝑝𝑝 is the plasma frequency. We model the NPF 
here as 𝑞𝑞(𝑘𝑘, 𝜔𝜔) = 𝑞𝑞(𝑘𝑘, 0) = 𝑖𝑖 𝜔𝜔2

2(𝑘𝑘) √2⁄ 𝜔𝜔1(𝑘𝑘), 
which is justified by the specific behavior of the 
one-component plasma (OCP) dynamic 
structure factor near the zero frequency [4]. 
Thus the calculation of the OCP plasma 
stopping power and starggling is reduced to the 
knowledge of the system static structure factor. 
The latter can be either calculated within a 
modified or local-field corrected RPA, or 
computed using the MD method with an 
adequate effective potential [5].   
The results of our calculations are to be com-
pared to the available experimental or simula-
tion data.  
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