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Dynamic characteristics of strongly coupled classical one-component Coulomb and Yukawa plasmas are
obtained within the nonperturbative model-freemoment approach without any data input from simulations so
that the dynamic structure factor (DSF) satisfies the first three nonvanishing sum rules automatically. TheDSF,
dispersion, decay, sound speed, and other characteristics of the collective modes are determined using
exclusively the static structure factor calculated fromvarious theoretical approaches including the hypernetted
chain approximation. A good quantitative agreement with molecular dynamics simulation data is achieved.
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Strongly coupled plasmas (SCPs) appear in various
settings in nature (e.g., in dense astrophysical matter in
white dwarfs and neutron stars [1]), as well in the
laboratory (in ultracold plasmas [2], electrolytes and
charged stabilized colloids [3], laser-cooled ions in cryo-
genic traps [4], and dusty plasmas [5]). SCPs and warm
dense matter are highly relevant model systems for inertial
fusion devices [6]. The common property of SCPs is that
the interparticle potential energy dominates over the ther-
mal energy. Many of the above-mentioned systems have
been analyzed and their characteristic effects became
understood within the framework of a seminal model
system, the one-component plasma (OCP) model that
considers explicitly only one type of charged species,
while the presence and the effects of other charged species
are expressed by the interaction potential φðrÞ.
SCPs, as many-body dynamical systems, exhibit various

collective excitations, of which the properties have been
investigated both via theoretical approaches and numerical
simulations. Numerical approaches provide direct access to
the central quantity of collective effects, the dynamic
structure factor (DSF). The most successful theoretical
approach capable of describing strongly coupled plasmas,
the quasilocalized charge approximation [7], is able to
predict [from the static pair distribution function (PDF)] the
dispersion relations of the collective modes; however, it
cannot predict the lifetime (decay) of the modes and the

form of the DSF itself. Here we demonstrate that the
method of moments theoretical approach [8] is able to
predict the form and structure of the DSF of the OCP, based
on static data only, i.e., the PDF or the static structure factor
(SSF). As both the PDF and the SSF can be obtained
theoretically as well [e.g., within the hypernetted chain
(HNC) approximation and its modifications including the
bridge function] the present approach provides a purely
theoretical access to the full DSF and a full quantitative
description of the collective modes, including their decay
and other characteristics, without the necessity to use
simulation data as input, as it was done in [9,10].
The moment approach is nonperturbative, nonparametric,

and model free. Thus it is perfectly applicable to a broad
class of fluids characterized by response functions like
semidegenerate multicomponent Coulomb systems or even
simple liquids. Because of the rigorous mathematical back-
ground, themethod is based on automatic satisfaction of sum
rules and other exact relations. An empirical guidance is
plugged directly into the intermediate step of theoretical
computations, thus closing the approach andpermitting us, in
addition, to determine the dynamic characteristics in terms of
the static ones. OCPs are chosen in this Letter for the
demonstration of the numerical validity of the approach.
Results for other types of fluids are to be presented elsewhere.
Two main types of potentials are of interest in OCPs. The

Coulomb potential describes systems where the background
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of the oppositely charged species is not polarizable (e.g.,
a degenerate electron liquid embedding positive ions)—
systems with this property are further referred to as
Coulomb OCPs (COCPs), while the Yukawa OCPs
(YOCPs) are characterized by a screened-Coulomb (Debye-
Hückel, or Yukawa) potential between the “primary” species,
where the screening is established by “secondary” species.
From the point of view of statistics, the OCPs we

consider here are classical systems; no quantum effects
are taken into account. Hence, all properties of COCPs
characterized by φCðrÞ ¼ ðZeÞ2=r depend on a unique
dimensionless coupling parameter Γ ¼ βðZeÞ2=a. Here β−1
stands for the temperature in energy units, Ze denotes the
particle charge, and a ¼ ð3=4πnÞ1=3 is the Wigner-Seitz
radius, n being the number density of the particles. The
strongly coupled (liquid) domain is characterized by Γ > 1.
The upper limit of the coupling parameter for the liquid
phase is determined by the Wigner crystallization into
Coulomb crystals [11].
In YOCPs, in addition to the coupling parameter Γ,

the screening is expressed by the parameter κ that
“tunes” the range of the interaction potential, φYðrÞ ¼
ððZeÞ2=rÞ exp ð−κr=aÞ.
For convenience, we introduce here the dimensionless

wave number q ¼ ka and write the Fourier transforms of
both potentials in terms of the form factor: φαðqÞ ¼
4πðZea=qÞ2ζαðq; κÞ, α ¼ C; Y. In YOCPs, ζYðq; κÞ ¼
q2=ðq2 þ κ2Þ, while in Coulomb OCPs ζCðq; κ ¼ 0Þ ¼ 1.
The crystallization condition of the YOCPs depends on both
parameters [12]. The chief dynamic characteristic of the
systems we consider here is the DSF, Sðq;ω; κÞ, which is a
positive even function of frequency. The dimensionless even-
order power frequency moments of the DSF,

Sνðq; κÞ ¼
1

n

Z
∞

−∞
ωνSðq;ω; κÞdω; ν ¼ 0; 2; 4;

are the known sum rules (see [13,14], and references therein),

S0ðq; κÞ ¼ Sðq; κÞ; S2ðqÞ ¼
ω2
pq2

3Γ
;

S4ðq; κÞ ¼ ω2
pS2ðqÞ½ζαðq; κÞ þ q2=ΓþUðq; κÞ�;

Uðq; κÞ ¼ 1

12π

Z
∞

0

½Sðp; κÞ − 1�fðp; q; κÞp2dp;

fðp; q; κÞ ¼ 2ð3q2 − κ2 − p2Þ
q2

þ ðq2 − κ2 − p2Þ2
2q3p

× ln
�
κ2 þ ðqþ pÞ2
κ2 þ ðq − pÞ2

�
−

8p2

3ðκ2 þ p2Þ : ð1Þ

The odd-order moments vanish due to the symmetry of the
DSF. Contrary to the multicomponent plasma situation [15],
higher-order OCP sum rules converge but they are related to
scarcely studied nonpairwise correlations that we neglect
here; see nevertheless [16]. Notice that

Uðq → 0; κÞ≃ 4q2

45π

Z∞

0

ð1þ 5κ2

2p2 þ 15κ4

2p4 Þ
ð1þ κ2

p2Þ3
½Sðp; κÞ − 1�dp

¼ 4q2

45Γ
uðΓ; κÞ þOðq4Þ; ð2Þ

where uðΓ; κÞ is the correlation energy per particle normal-
ized to the temperature [17]; ω2

p ¼ 3e2=ma3 is the plasma
frequency and Sðq; κÞ is the static structure factor.
The Nevanlinna formula of the classical theory of

moments [8] establishes a unilateral correspondence
between the DSF (as a noncanonical solution of the moment
problem) and the nonphenomenological Nevanlinna param-
eter function (NPF) Qðq;ω ¼ Rezþ i0þ; κÞ which addi-
tionally satisfies the following limiting condition [8]:
limz→∞½Qðq; z; κÞ=z� ¼ 0, Imz > 0,

πSðq;ω; κÞ
nSðq; κÞ ¼ ω2

1ðω2
2 − ω2

1ÞImQ
jωðω2 − ω2

2Þ þQðω2 − ω2
1Þj2

; ð3Þ

where the characteristic frequencies are defined by the ratios
of the moments: ω2

1ðq; κÞ ¼ S2ðqÞ=Sðq; κÞ, ω2
2ðq; κÞ ¼

S4ðq; κÞ=S2ðqÞ.
Consider a canonical solution of the moment problem

[18] corresponding to the set fS0ðq; κÞ; 0; S2ðqÞ; 0;
S4ðq; κÞg,
Sðq;ω;κÞ
nSðq;κÞ ¼

�
1−

ω2
1

ω2
2

�
δðωÞþ ω2

1

2ω2
2

½δðω−ω2Þþδðωþω2Þ�:

ð4Þ
Notice that due to the Cauchy-Schwarz inequality [14,19],
ω2
1ðq; κÞ < ω2

2ðq; κÞ. The Feynman-like [20] solution (4)
describes nondecaying collective modes in the system: a
diffusive one at ω ¼ 0, as well as an optical (plasma or
Langmuir-Bohm-Gross) mode at ωL ¼ ω2ðq; κ ¼ 0Þ in the
COCPs and a quasiacoustic mode in the YOCPs with the
sound velocity

csðκÞ ¼ ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

κ2
þ 4uðΓ; κÞ þ 45

45Γ

r
: ð5Þ

This mode exhibits a roton minimum at higher q values,
attributable to the quasilocalization of particles in a strongly
correlated liquid [21]. Because of the compressibility sum
rule and Parseval’s identity, the correlation energy uðΓ; κÞ is
directly related to the system compressibility.
In the present work, we do not reconstruct the NPF

from the very data we wish to describe like it was done
in [22], but model it by its static value [9,10]:
Qðq;ω; κÞ ¼ Qðq; 0; κÞ ¼ ihðq; κÞ, hðq; κÞ > 0. The latter
positive parameter function was related in [10] to the static
value of the DSF directly via (3). Here we suggest
determining it independently on the basis of the empirical
observation that the DSFs exhibit extrema at ω ¼ 0.
Because of its symmetry, the DSF
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πSðq;ω; κÞ
nSðq; κÞ

����
Q¼ih

¼ ω2
1ðω2

2 − ω2
1Þh

ω2ðω2 − ω2
2Þ2 þ h2ðω2 − ω2

1Þ2
ð6Þ

depends only on the square of frequency. The rhs of (6) as a
function of a new variable x ¼ ω2 is proportional to

Fðx;hÞ ¼ ðxðx − ω2
2Þ2 þ h2ðx − ω2

1Þ2Þ−1;
which exhibits extrema at x ¼ 0 if F0ð0; hÞ ¼
ð2h2ω2

1 − ω4
2Þ=h4ω8

1 ¼ 0, i.e., if

hðq; κÞ ¼ h0ðq; κÞ ¼
ω2
2ðq; κÞffiffiffi

2
p

ω1ðq; κÞ
; ð7Þ

while the sign of the second derivative at x ¼ 0 for h ¼ h0,
F00ð0; h0Þ ¼ 4ð4ω2

1 − ω2
2Þ=ðω1ω2Þ6, i.e., the sign of the

parameter θ ¼ ð2ω1 − ω2Þ=ωp ∈ ð−ω2=ωp;ω2=ωpÞ deter-
mines the nature of the extremum at ω ¼ 0. A positive
θðq; κÞ corresponds to a minimum, and vice versa. Notice
that the DSF value at ω ¼ 0,

πSðq; 0; κÞ
nSðq; κÞ

����
Q¼ih

¼ ω2
2ðq; κÞ − ω2

1ðq; κÞ
hðq; κÞω2

1ðq; κÞ
;

is positive and observe that Sðq; 0; κÞ for h ¼ h0 is a
decreasing function of the parameter θðq; κÞ. It is important
that here we do not rely on adjustable parameters like
Sðq; 0; κÞ, and that the resulting expression,

πSðq;ω; κÞ
nSðq; κÞ ¼ ω2

1ðω2
2 − ω2

1Þh0
ω2ðω2 − ω2

2Þ2 þ h20ðω2 − ω2
1Þ2

; ð8Þ

contains no static parameters, which we could not calculate
theoretically or numerically. In other words, given the
thermodynamic parameters of the system or the values of
the coupling and screening parameters Γ and κ, we are able
to predict the form of the DSF by calculating only the static
characteristics of the system. Besides, the position of the
shifted maximum in the spectrum, which is the COCP
Langmuir-Bohm-Gross mode frequency or the YOCP
acoustic-roton mode frequency, can be calculated directly
as an exact solution of the dispersion equation

z½z2 − ω2
2ðq; κÞ� þ ih0ðq; κÞ½z2 − ω2

1ðq; κÞ� ¼ 0: ð9Þ
To this end the solutions of this equation found in [10]

can be employed, particularly the one corresponding to the
“shifted” mode: ωshðq; κÞ ¼ ωðq; κÞ − iδðq; κÞ ¼ −wX−
w2Y − ih0=3, where w ¼ exp ð2πi=3Þ,

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0W=2iþ Z33

q
; Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0W=2i − Z33

q
;

Z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðω2

2=3 − h20=9Þ3 − ðh0W=2Þ2
q

;

W ¼ −ω2
2=3þ ω2

1 þ 2h20=27: ð10Þ

In the following we present the results obtained via the
theoretical approach described above and compare these
with the results of numerical simulations.
Our molecular dynamics (MD) code simulates the

motion of N ¼ 10 000 pointlike particles within a cubic
cell. For the COCP case we use the particle-particle
particle-mesh method to account for the long range of
the Coulomb potential [23], while for the YOCP the fast
decay of the interaction forces makes it possible to
introduce a cutoff distance, beyond which the interaction
of particle pairs can be neglected. The integration of the
equations of motion is performed with the velocity-Verlet
scheme. At the initialization of the simulations the posi-
tions of the particles are set randomly, while their initial
velocity vectors are sampled from a Maxwellian distribu-
tion corresponding to a specified system temperature.
During the first phase of the simulations the particle
velocities are rescaled in each time step, in order to reach
the desired temperature. This procedure is stopped before
the second, measurement phase of the simulation, when
data are collected for the spatial Fourier components of the
microscopic density, and an additional Fourier transform in
the time domain yields the DSF.
In Figs. 1 and 2 we display results for the DSFs of the

COCP and YOCP, respectively, compared to the simulation
data. These and other results displayed here were obtained
using the SSF calculatedwithin theHNC approximation.We
have studied the dependence of the quality of our dynamic
results on the method of precalculation of the SSF. Up to
seven different static approaches were analyzed; certain
minor improvements (up to 5%) were observed with respect
to the HNC; see details in Supplemental Material [24].
A fairly good agreement is observed not only in the

above figures, but in all cases we have considered; see
Supplemental Material [24]. We believe that the present
approach can be extended to the whole OCP liquid plane.
A similar level of overall agreement with the MD data has

(a) (b)

(c) (d)

FIG. 1. The COCP DSF calculated from (8) (lines) and
obtained from MD simulations (symbols).
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been achieved only by direct adjustment [33]. The param-
eter θðq; κÞ conveys important information about the decay
of the collective mode: positive values indicate propagating
(weakly decaying) modes, while at negative values energy
dissipation processes prevail; see, e.g., Fig. 3.
When the collective mode is weakly decaying, we can

predict the characteristics of the mode: the dispersion of the
Langmuir-Bohm-Gross mode in COCPs and of the qua-
siacoustic mode in YOCPs; we can also calculate the sound
speed in the latter with fairly high precision; see Figs. 4
and 5.
The roton parabolic minima become well pronounced in

the YOCP collective mode dispersion curves at higher
values of the wave number and the coupling parameter Γ,

and as the screening parameter a=κ approaches the
Wigner-Seitz radius a or κ → 1 [21]. The negative
dispersion is, certainly, observed for the COCP optical
mode for Γ≳ 9 when the negative correlation contribution
to the fourth sum rule (1), Uðq; 0Þ, compensates the kinetic
one. In COCPs we also observe a significantly decaying
plasmon-roton mode.
Notice that when θðq; κÞ is positive we can even predict

the decrement of the propagating mode with an acceptable
precision. When θðq; κÞ < 0 the “shifted” mode merges
with the “unshifted” diffusive mode and we can no longer
assign the imaginary parts of the solutions of Eq. (18) to
different modes.
In conclusion, a theoretically rigorous and computa-

tionally efficient nonphenomenological algorithm with
no perturbative or adjustment parameters is proposed
for the straightforward calculation of various dynamic

(a) (b)

(c) (d)

FIG. 2. The YOCP DSF calculated from (8) (lines) and
obtained from MD simulations (symbols).

(a) (b)

(c) (d)

FIG. 3. The COCP DSF at Γ ¼ 20 [(a) and (b)] and YOCP DSF
at Γ ¼ 40, κ ¼ 1.5 [(c) and (d)] calculated from (8) (lines) and
obtained from MD simulations (circles); (a) q ¼ 1.8, (b) q ¼ 4.7,
(c) q ¼ 1.39, and (d) q ¼ 4.02.

(a) (b)

(c) (d)

FIG. 4. (a) Dispersion relation for the COCP plasma modes,
compared to MD data. Lines correspond to the exact solution of
(9). (b) Dispersion relation for the YOCP quasiacoustic mode at
Γ ¼ 100 and κ ¼ 2, compared to MD data. 1 stands for the exact
solution of (9), 2 represents ω2ðq; κÞ, and 3 is the acoustic part of
the mode, ω ¼ csq. (c) Decrement of the COCP plasma modes.
(d) Decrement of the YOCP acoustic modes. Lines stand for the
exact solutions with HNC SSFs; dots were derived as the full
width at half maximum of the MD DSF.

(a) (b)

FIG. 5. Sound speed in YOCPs for (a) Γ ¼ 20 and (b) Γ ¼ 100,
compared to the MD results (dots). 1 was calculated using HNC
or any other SSF, and 2 corresponds to (5).
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characteristics of classical strongly coupled Coulomb and
Yukawa fluid OCPs in terms of the static structure factors
of these systems only. The latter were calculated using the
HNC. A parameter allowing for a discrimination between
propagating and strongly decaying collective modes was
introduced. Thus, we are able to predict the form and
provide a reliable numerical outcome for the DSFs with no
adjustment to the dynamical data. A good agreement is
obtained with available numerical data on other dynamic
characteristics like the collective mode dispersion in
COCPs, the acoustic-roton mode, and the sound speed
in YOCPs. Additional graphical material, in particular,
obtained with the MD and alternative static schemes, and
other details are provided in Supplemental Material [24].
In the context of the inverse dielectric function, the

present method can also be employed for the solution of
other dynamic problems, like the reflectivity or the stop-
ping power and straggling in more complex systems, which
is a work in progress. In general, the suggested mathemati-
cal approach is perfectly applicable in any physical system
described by a response function like the inverse dielectric
function or the DSF, as it was intended in [34–36] but still
with the involvement of the simulation data.
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