373 research outputs found
Dynamics of transformation of nitrogen and phosphorus compouds in the wastewater in the process of biological treatment
The denitrification, phosphorylation and dephosphorylation dynamics in activated sludge systems was studied in the lab conditions. It was shown thatthe dephosphorylation took place mainly in between 30 min and 60 min of aeration time. The denitrification rate is defined by nitrates concentration in mixed liquor and depends on the current conditions – availability of dissolved oxygen, volatile organic compounds and others
Recommended from our members
Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign
We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10–12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness
Theoretical estimates of the anapole magnetizabilities of C4H4X2 cyclic molecules for X=O, S, Se, and Te
Calculations have been carried out for C4H4X2 cyclic molecules, with X=O, S, Se, and Te, characterized by the presence of magnetic-field induced toroidal electron currents and associated orbital anapole moments. The orbital anapole induced by a static nonuniform magnetic field B, with uniform curl C =∇× B, is rationalized via a second-rank anapole magnetizability tensor aαβ , defined as minus the second derivative of the second-order interaction energy with respect to the components Cα and Bβ. The average anapole magnetizability a equals −χ, the pseudoscalar obtained by spatial averaging of the dipole-quadrupole magnetizability χα,βγ . It has different sign for D and L enantiomeric systems and can therefore be used for chiral discrimination. Therefore, in an isotropic chiral medium, a homogeneous magnetic field induces an electronic anapole Aα, having the same magnitude, but opposite sign, for two enantiomorphs.Fil: Pagola, Gabriel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Ferraro, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Provasi, Patricio Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnologica; ArgentinaFil: Pelloni, Stefano. Universidad de Modena y Reggio Emilia. Departamento de Química; ItaliaFil: Lazzeretti, Paolo. Universidad de Modena y Reggio Emilia. Departamento de Química; Italia; Itali
Parity violation in deuteron photo-disintegration
We analyze the energy dependence for two types of parity-non-conserving
(PNC) asymmetries in the reaction in the near-threshold
region. The first one is the asymmetry in reaction with circularly polarized
photon beam and unpolarized deuteron target. The second one corresponds to
those with an unpolarized photon beam and polarized target. We find that the
two asymmetries have quite different energy dependence, and their shapes are
sensitive to the PNC-meson exchange coupling constants.
The predictions for the future possible experiments to provide definite
constraints for the PNC-coupling constants are discussed.Comment: 22 pages, 12 figures. Submitted to Phys.Rev.C 10Oct.0
The Toroid Moment of Majorana Neutrino
If neutrino is the Majorana particle it can possess only one electromagnetic
characteristic, the toroid dipole moment (anapole) in the static limit and
nothing else. We have calculated the diagonal toroid moment (form factor) of
the Majorana neutrino by the dispersion method in the one-loop approximation of
the Standard Model and found it to be different from zero in the case of
massive as well as massless neutrinos. All external particles are on the mass
shells and there are no problems with the physical interpretation of the final
result. Some manifestations of the toroid interactions of Majorana neutrinos,
induced by their toroid moments, are also remarked.Comment: 22 pages, 1 table and 3 EPS-figures included, uses prd.sty,
preprint.sty, aps.sty and epsfig.sty (RevTeX is used), major conceptual
changes of E2-96-53 are include
Retrieval of spatio-temporal distributions of particle parameters from multiwavelength lidar measurements using the linear estimation technique and comparison with AERONET
The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3β + 1α lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement
Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements
AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings
Anomalous asymmetry of magnetoresistance in NbSe single crystals
A pronounced asymmetry of magnetoresistance with respect to the magnetic
field direction is observed for NbSe crystals placed in a magnetic field
perpendicular to their conducting planes. It is shown that the effect persists
in a wide temperature range and manifests itself starting from a certain
magnetic induction value , which at K corresponds to the
transition to the quantum limit, i.to the state where the Landay level
splitting exceeds the temperature.Comment: 4 pages, 6 figures, to be appeared in JETP Let
The AMMA mulid network for aerosol characterization in West Africa
Three ground based portable low power consumption microlidars (MULID) have
been built and deployed at three remote sites in Banizoumbou (Niger), Cinzana
(Mali) and M'Bour (Senegal) in the framework of the African Monsoon
Multidisciplinary Analyses (AMMA) project for the characterization of aerosols
optical properties. A description of the instrument and a discussion of the
data inversion method, including a careful analysis of measurement
uncertainties (systematic and statistical errors) are presented. Some case
studies of typical lidar profiles observed over the Banizoumbou site during
2006 are shown and discussed with respect to the AERONET 7-day
back-trajectories and the biomass burning emissions from the Combustion
Emission database for the AMMA campaign
Radioactive contamination of ZnWO4 crystal scintillators
The radioactive contamination of ZnWO4 crystal scintillators has been
measured deep underground at the Gran Sasso National Laboratory (LNGS) of the
INFN in Italy with a total exposure 3197 kg x h. Monte Carlo simulation,
time-amplitude and pulse-shape analyses of the data have been applied to
estimate the radioactive contamination of the ZnWO4 samples. One of the ZnWO4
crystals has also been tested by ultra-low background gamma spectrometry. The
radioactive contaminations of the ZnWO4 samples do not exceed 0.002 -- 0.8
mBq/kg (depending on the radionuclide), the total alpha activity is in the
range: 0.2 - 2 mBq/kg. Particular radioactivity, beta active 65Zn and alpha
active 180W, has been detected. The effect of the re-crystallization on the
radiopurity of the ZnWO4 crystal has been studied. The radioactive
contamination of samples of the ceramic details of the set-ups used in the
crystals growth has been checked by low background gamma spectrometry. A
project scheme on further improvement of the radiopurity level of the ZnWO4
crystal scintillators is briefly addressed.Comment: 15 pages, 8 figures, 6 tables, submitted for publicatio
- …