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Abstract. The results of the application of the linear es-
timation technique to multiwavelength Raman lidar mea-
surements performed during the summer of 2011 in Green-
belt, MD, USA, are presented. We demonstrate that multi-
wavelength lidars are capable not only of providing verti-
cal profiles of particle properties but also of revealing the
spatio-temporal evolution of aerosol features. The nighttime
3β + 1α lidar measurements on 21 and 22 July were in-
verted to spatio-temporal distributions of particle microphys-
ical parameters, such as volume, number density, effective
radius and the complex refractive index. The particle vol-
ume and number density show strong variation during the
night, while the effective radius remains approximately con-
stant. The real part of the refractive index demonstrates a
slight decreasing tendency in a region of enhanced extinc-
tion coefficient. The linear estimation retrievals are stable
and provide time series of particle parameters as a func-
tion of height at 4 min resolution. AERONET observations
are compared with multiwavelength lidar retrievals showing
good agreement.

1 Introduction

Multiwavelength (MW) Raman lidar and HSRL (high spec-
tral resolution lidar) are recognized as powerful tools
for aerosol characterization. The height-resolved particle

backscattering, extinction and depolarization at multiple
wavelengths provided by such lidars can be used for aerosol
classification (Omar et al., 2009; Burton et al., 2012) and are
important parameters in climate modeling (Ganguly et al.,
2009; Miller et al., 2011). Another attractive feature of these
lidars is the ability to invert the measurements to provide
vertical profiles of particle physical properties. During the
last decade numerous theoretical and experimental studies
have been performed attempting to realize such inversions,
and the results obtained look rather promising (Ansmann
and Müller, 2005; Böckmann et al., 2005; Veselovskii et al.,
2002, 2004, 2009, 2010, 2012; Müller et al., 1999, 2011; Noh
et al., 2011). Though the amount of independent observations
provided by MW lidar technique is very limited (normally
only three backscattering and two extinction coefficients are
available, the so called 3β + 2α data set), the use of reason-
able constraints in the inversions allows the estimation of
the particle characteristics. The potential of the method has
also been extended due to recent progress in the treatment
of desert particles and dust–smoke mixtures (Dubovik et al.,
2006; Veselovskii et al., 2010; Tesche et al., 2009; Nishizawa
et al., 2011).

To contribute to the study of the Earth’s radiation balance,
the MW lidar measurements should be performed on a global
scale; thus space-borne systems are desirable. The operation
of the CALIOP (Cloud-Aerosol LIdar with Orthogonal Po-
larization) instrument since 2006 has confirmed the potential
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of lidar observations from space for aerosol classification and
transport studies (Omar et al., 2009; Winker et al., 2013). The
CALIOP instrument possesses just two (532 and 1064 nm)
backscattering channels in combination with depolarization
measurements at 532 nm; thus the next logical step would
be to increase the number of the wavelengths and incorpo-
rate HSRL channels providing a data set that could support
inversions to retrieve particle microphysics. The recent re-
sults obtained with the airborne NASA Langley Research
Center (LaRC) HSRL system (Hair et al., 2008; Burton et
al., 2012) support the importance of this next step, and to-
day the ACE (Aerosols, Clouds, Ecosystems) mission in-
volving a 3β+2α HSRL system is under consideration (http:
//dsm.gsfc.nasa.gov/ace).

However before transferring MW lidar technology to
space, numerous issues in the analysis of the measurements
should be resolved. In particular, the variability of aerosol pa-
rameters over the globe should be taken into account: the par-
ticles may be of irregular shape, the complex refractive index
(CRI) may be size and spectrally dependent and the aerosols
may be represented by external or internal mixtures. Thus, to
determine realistic uncertainties of the retrieved particle pa-
rameters, numerous measurements at different locations are
needed, with the results being compared with independent
collocated instruments. And finally, given that measurements
from space involve large quantities of data and are gener-
ally characterized by higher uncertainties than ground-based
measurements, the retrieval algorithms used for space-based
measurements should be fast enough to manage large vol-
umes of data and tolerant of measurement noise.

The regularization algorithm is used most commonly
for inversion of MW measurements (Müller et al., 1999;
Veselovskii et al., 2002, 2004), allowing the retrieval of par-
ticle size, concentration, CRI, and to some extent the main
features of the particle size distribution (PSD). However, reg-
ularization methods are quite time consuming, so it is at-
tractive to test other inversion techniques as possible candi-
dates for operational algorithms for space-based data. One
of the possible approaches to the inversion is based on the
expansion of the PSD in terms of the measurement kernels
(Twomey, 1977; Thomason and Osborn, 1992; Donovan and
Carswell, 1997; Veselovskii et al., 2012; De Graaf et al.,
2013). The particle bulk properties in the frame of this ap-
proach are represented by a linear combination of the in-
put optical data, so here and below we will refer to it as
“linear estimation”. The regularization and the linear esti-
mation (LE) techniques are characterized by similar uncer-
tainties (Veselovskii et al., 2012), but the LE technique is
faster because there is no need to solve the system of linear
equations for different values of predefined regularization pa-
rameters (Veselovskii et al., 2002, 2012). Application of this
approach to measurements performed in Turkey (Veselovskii
et al., 2012) has demonstrated the stability of the retrieval
and the possibility of obtaining the spatio-temporal values of
particle parameters.

The most practical configuration of backscatter–Raman li-
dar is based on a tripled Nd:YAG laser, supporting the mea-
surement of three backscattering (β355,532,1064) and two ex-
tinction (α355,532) coefficients. One of the main issues in pro-
cessing such Raman lidar measurements is the calculation
of the particle extinction coefficient, because it is based on
numerical differentiation of a weak nitrogen Raman signal
(Ansmann et al., 1992; Whiteman, 1999). This problem is
especially critical for the calculation of the extinction coef-
ficient at 532 nm (α532), where both the Raman signal and
the aerosol extinction coefficient are normally lower than
at 355 nm. As a resultα532 is characterized by higher er-
rors, especially for daytime measurements. Furthermore, a
recent sensitivity study (Perez-Ramirez et al., 2013) demon-
strates that retrieved particle parameters are in general much
more sensitive to errors in the input extinction data than the
backscattering data. Therefore, in many situations it could
be desirable to excludeα532 from the input data. Such a re-
duced 3β + 1α data set is not sufficient to reproduce the de-
tails of the PSD, but the particle bulk properties in most cases
still can be estimated. The first results of such a data reduc-
tion study demonstrate that at least for a PSD with prevailing
fine mode the inversion of the full (3β + 2α) and reduced
(3β +1α) data sets leads to similar results (Veselovskii et al.,
2012).

In this paper we extend that previous study by perform-
ing simulations and applying the regularization and LE ap-
proaches to the full and reduced data sets of extended li-
dar measurements performed with the MW Raman lidar at
NASA Goddard Space Flight Center (GSFC) in Greenbelt,
MD, during the summer of 2011. To evaluate the technique,
the lidar retrievals are compared with the results provided by
AERONET (Holben et al., 1998).

2 Approach to retrieval

The aerosol extinction (α) and backscattering coefficients
(β) are related to the particle size distribution (PSD)dV (r)

dr
via integral equations as follows:

gp =

rmax∫
rmin

Kp(m,r)
dV (r)

dr
drp = 1, . . .,N. (1)

The indexp represents the type of optical data (α, β) and
wavelengths;Kp(m,r) are the volume kernels (VK) depend-
ing on the complex refractive index (CRI)m = mR−imI and
particle radiusr ∈[rmin,rmax].

A detailed description of the linear estimation approach is
given in Veselovskii et al. (2012). Equation (1) can be rewrit-
ten in the matrix–vector form. The vector of input optical
datag (aerosol extinction and backscattering coefficients) is
related to the volume size distributionv as

K v = g, (2)
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whereK is the matrix containing discretized measurement
kernels as columns.

Any particle bulk propertyp (for example, volume, sur-
face or number density) can be estimated as

p = Pv = P KT
(
KK T

)−1
g. (3)

HereP is a matrix containing the weight coefficients for dif-
ferent integral properties as rows. For example for volume
(i = 1), P1k = 1; for surface (i=2), P2k =

3
rk

; and for num-

ber density (i = 3), P3k =
3

4πr3
k

. It should be mentioned that

when retrievingp, we consider only projections of the char-
acteristics ofp on the measured setg and ignore the residual
p⊥ that cannot be measured directly with the available set
of observationsg (the so-called null space). Our previous re-
sults demonstrate that the existence of a null space does not
present a serious limitation to the LE technique for typical
atmospheric aerosols (Veselovskii et al., 2012).

The inverse problem in our formulation is under-
determined: the set of lidar measurements within a single at-
mospheric layer is limited – typically only 5 observations.
This number of measurements is not sufficient to uniquely
describe the properties of the aerosol; therefore, we use an
intermediate approach. We perform inversions using a rea-
sonable set of constraints and generate a family of solutions.
Specifically, we consider a set of inversion windows [rmin,
rmax] and complex refractive indicesm = mR− imI from the
corresponding intervals. The ranges of allowed values for
the parameters can be considered as a priori constraints. Al-
though those constraints do not provide a unique solution,
they help to significantly reduce the number of solution fam-
ily members.

Whatever approach we use for inversion (regularization or
linear estimation) the key point is identifying a group of so-
lutions which, after averaging, can provide a realistic esti-
mation of the particle parameters. Such identification can be
done by considering the discrepancyρ defined as the differ-
ence between the input optical datag and the optical data
g̃p(m) calculated from the solution obtained for specific val-
ues of the input parameters. In the linear estimation tech-
nique, we choose one optical datumgp and estimate it from
the rest of theN-1 data using Eq. (3), as suggested in De
Graaf et al. (2013). By doing so for each optical datum, we
obtain estimates of̃gp(m), which we compare with the ob-
servationsgp. The discrepancyρ is then calculated as

ρ =

√√√√√ N∑
p

(
gp − g̃p(m)

)2

N
. (4)

Thus, the discrepancy can quantify inconsistency in the input
optical data. A high discrepancy means that no appropriate
particle parameters were found since the solution obtained
does not generate optical data close to the observationsg and
normally this points to problems in the measurements.

29 

 

1.35 1.40 1.45 1.50 1.55 1.60 1.65

0

10

20

30

40

50

 

 

D
is

c
re

p
a

n
c
y
, 
%

m
R

 mI
max

=0.01

 mI
max

=0.02

 mI
max

=0.05

a

 

 

1.35 1.40 1.45 1.50 1.55 1.60 1.65

0

10

20

30

40

50

60

70

 

 

 mI
max

=0.01

 mI
max

=0.02

 mI
max

=0.05

U
n
c
e
rt

a
in

ty
 o

f 
v
o
lu

m
e
 e

s
ti
m

a
ti
o
n
, 

%

m
R

b

 

 

Fig.1. (a) Discrepancy and (b) uncertainty of volume estimation as a function of assumed values 

of the real part of the refractive index for different ranges of considered values of the imaginary 

part with  maximal values mI=0.01, 0.02, 0.05. The simulation was performed for a log-normal 

PSD with modal radius r0=0.15 µm and dispersion ln=0.4. The arrow shows the real part of the 

refractive index mR=1.45 for the synthetic data. 
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Fig.1. (a) Discrepancy and (b) uncertainty of volume estimation as a function of assumed values 

of the real part of the refractive index for different ranges of considered values of the imaginary 

part with  maximal values mI=0.01, 0.02, 0.05. The simulation was performed for a log-normal 

PSD with modal radius r0=0.15 µm and dispersion ln=0.4. The arrow shows the real part of the 

refractive index mR=1.45 for the synthetic data. 

 

Fig. 1. (a)Discrepancy and(b) uncertainty of volume estimation as
a function of assumed values of the real part of the refractive index
for different ranges of considered values of the imaginary part with
maximum valuesmI = 0.01, 0.02, 0.05. The simulation was per-
formed for a log-normal PSD with modal radiusr0 = 0.15 µm and
dispersion lnσ = 0.4. The arrow shows the real part of the refractive
indexmR = 1.45 for the synthetic data.

As pointed out in our previous publication (Veselovskii et
al., 2012), the high sensitivity ofg to m allows the estima-
tion of particle refractive index by calculating1gp = g̃p−gp

for different assumed values ofm and by searching for the
minimum of the discrepancy. We should recall, however, that
the complex refractive index in our approach is assumed to
be spectrally independent. The estimation of the real part of
the refractive index from the minimization ofρ in Eq. (4)
for the 3β +2α data set using the linear estimation approach
is illustrated by Fig. 1 where the discrepancyρ and the un-
certainty of the volume estimationεV are given for different
assumptions ofmR. Synthetic input data were generated as-
suming a log-normal distribution of particle number density
dn(r)
dlnr

with modal radius 0.15 µm and variance 0.4; the model
refractive index ism = 1.45−i0.005. The behavior ofρ(mR)
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depends on the range of parameters considered; in particular
it depends on the range of the imaginary part considered [0,
mI,max]. The computations in Fig. 1 were performed for val-
uesmI,max = 0.01, 0.02, 0.05. For an accurate estimation of
mR a global minimum near the model valuemR is needed.
Figure 1a demonstrates that, formI,max = 0.01, mR(ρ) has
such a minimum at a value of approximately 1.45, so that
the discrepancy rises formR above and below 1.45. How-
ever for largermI,max the minimum becomes wider, meaning
that the accuracy of the estimation ofmR decreases, and for
mI,max = 0.05 it is practically flat from 1.45 to 1.65, so esti-
mates ofmR in this range will have considerable uncertainty.
Figure 1b shows the corresponding uncertainties of the vol-
ume estimation determined asεV =

|Vmod−V retr|
Vmod

, whereVmod
andVretr are model and retrieved values of volume. It is inter-
esting that, even though for the high values ofmI,max the real
part of CRI cannot be determined with accuracy, the uncer-
tainty of the volume estimationεV made using incorrect val-
ues ofmR does not increase significantly, which is in agree-
ment also with the results presented in Perez-Ramirez et al.
(2013). From Fig. 1b we can conclude thatεV ≈ 20 % when
we choosemR = 1.65 instead of 1.45. The same is true for
the rest of the parameters such as number, surface density
and effective radius. So finally, the increase of the range of
the values ofmI considered degrades the accuracy of the es-
timation of mR, even though the other bulk properties can
still be retrieved. Similar plots ofmI(ρ) can be provided to
illustrate the estimation of the imaginary part of the refrac-
tive index. The corresponding simulation leads to the same
conclusion: a reasonable estimation ofmI can only be made
if preliminary information about the range ofmI variation is
available.

The results presented in Fig. 1 were obtained assuming
that the simulated measurements contain no errors. The er-
rors in the simulated input data will modifymR(ρ), thus de-
grading the accuracy of the estimation ofmR . To analyze this
effect, errors were introduced in the synthetic input data in a
random way in the range of 0–10 %. Figure 2 showsmR(ρ)

plots for ten realizations following such a procedure assum-
ing mI,max = 0.01.mR(ρ) varies from realization to realiza-
tion; still the uncertainty of the estimation ofmR is below
±0.05. The corresponding uncertainty of the volume density
estimation does not exceed 20 %. These plots illustrate the
possibility of estimating the real part of the refractive index
from the measurements if we reasonably limit the range of
values ofmI considered.

3 Numerical simulation

Numerical simulations were performed to estimate the uncer-
tainties of the inversion of the complete 3β +2α and reduced
3β+1α (where extinction at 532 nm is removed) data sets us-
ing regularization and LE approaches. Synthetic input optical
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Fig.2. Influence of random errors in the input data on discrepancy (mR). The simulation was 

performed for the same parameters as in Fig.1 and the maximum value of mI  was 0.01. The 

results are presented for ten realizations with random errors in the range of 0-10%. The solid red 

line represents (mR) in the absence of input errors; the arrow shows the model value of the real 

part of the refractive index mR=1.45. 

Fig. 2. Influence of random uncertainties in the input data on the
discrepancyρ(mR). The simulation was performed for the same
parameters as in Fig. 1 and the maximum value ofmI was 0.01. The
results are presented for ten realizations with random errors in the
range of 0–10 %. The solid red line representsρ(mR) in the absence
of input errors; the arrow shows the model value of the real part of
the refractive indexmR = 1.45.

data were generated for a bimodal particle size distribution:

dn(r)

dln(r)
=

∑
i=f,c

NI

(2π)1/2 lnσi

exp

[
−

(lnr − lnri)
2

2(lnσi)2

]
. (5)

Here Nf,c is particle number density in the fine (f) and
the coarse (c) mode. Each mode is represented by a log-
normal distribution with modal radiusrf,c and dispersion
lnσf,c. The simulations were intended to support the analy-
sis of our measurements at NASA GSFC. From collocated,
multi-year AERONET measurements we can conclude that
aerosols in the summer season in the Greenbelt, MD area
typically are characterized by a size distribution where the
fine mode dominates (Dubovik et al., 2002). Thus, when
performing simulations, the following scenario was consid-
ered: the ratio of the particle number densities is range in-
dependent. The value ofrf changes with range from 0.1 to
0.3 µm, whilerc = 1 µm is fixed. As a result the effective
radius varies with range from 0.19 to 0.53 µm as shown in
Fig. 3. The volume density varies from 15 to 300 µm3 cm−3,
and CRI for both modes has a range-independent value
of m = 1.45–i0.005. The retrievals were performed using
both the LE and regularization techniques to compare their
performance. The “search space” of the parameters con-
sidered was 0.05 µm< r < 10 µm; 1.35< mR < 1.65; and
0< mI < 0.015.

The results of 3β + 2α and 3β + 1α data inversion are
shown in Fig. 3. The input data are assumed to be free of
errors, but uncertainties in retrievals still exist due to the un-
known value of the CRI, due to the approximation of the PSD
with the set of base functions (in the case of regularization)
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Fig. 3. Retrieval of range-dependent(a) effective radius and(b)
volume density from synthetic optical data. Results are given for
regularization and LE techniques applied to 3β + 2α and 3β + 1α

measurements. The black solid line shows the model particle pa-
rameters. The input optical data are free of errors.

and due to the existence of a null space (in the case of LE).
Retrievals of effective radius and volume performed with the
LE approach using 3β+2α measurements coincide well with
the model values. The agreement with the model is still good
when extinction at 532 nm is excluded from the measure-
ments; however for model valuesreff < 0.2 µm the retrieved
effective radius is overestimated. The regularization retrieval
is characterized by higher uncertainties: for 3β +2α,reff and
V are slightly overestimated, while for 3β +1α these param-
eters are underestimated.

To evaluate the effect of noise in the optical data on the
retrieved values, random errors in the range 0–10 % were in-
troduced into the simulated data sets. The inversion proce-
dure was repeated 20 times and the results are summarized in
Table 1, showing the uncertainties of effective radius (εreff),
volume density (εV ) and the real part of CRI estimation for
several chosen values of model effective radius. For 90 % of
the realizations, the uncertainty of the estimation of the parti-

cle parameters was below the values listed in the table. From
the results of these simulations, we can conclude that for a
PSD with a dominant fine mode, the LE approach has some
advantages over regularization. For example, the range of er-
rors in reff using the LE approach and 3β + 2α input data
is 10–20 %, while, using the same data, the range of errors
for the regularization approach is 30–35 %. When consider-
ing the 3β + 1α data set and retrieval ofreff, there is again
an increase in errors when using regularization versus linear
estimation. Careful study of the table indicates that for the
model aerosol distribution studied here with fine mode pre-
dominance the LE approach consistently resulted in lower er-
rors when compared with regularization. It is interesting that
for regularization the data reduction at small radii leads to a
decrease ofεreff. The behavior ofεV is similar. These results
can be due to the higher sensitivity of the retrievals to the in-
put extinction versus backscattering as previously mentioned
(Perez-Ramirez et al., 2013).

Data reduction (i.e. excludingα532) modifiesεmR for the
regularization and LE techniques in different ways. Using the
regularization technique and 3β + 2α, the uncertainty of the
estimation ofmR does not exceed 0.05 for all radii, but the
exclusion ofα532 from the input data causesεmR to increase
to 0.1 forreff > 0.4 µm. For the LE technique with the same
input data, the behavior is different: data reduction decreases
εmR for all radii, in particular for small radii where it de-
creases from 0.07 to 0.05.

In discussing the effect of data reduction we should point
out that, in principle, the uncertainties of 3β + 1α inver-
sion can be lower than 3β + 2α. As we have already men-
tioned, the retrievals are more sensitive to the errors in ex-
tinction than in backscattering (Perez-Ramirez et al., 2013);
thus adding an additional extinction value to the input data
set is a trade between new information available and the un-
certainty of retrieval induced by the errors in this additional
extinction. On the other hand, the use of 3β + 2α input data
is advantageous if details of the PSD, such as the contribu-
tions of the fine and the coarse mode to the total volume, are
needed.

We should emphasize also that the simulation performed
here is rather simplified. For example, the effects of a spec-
trally and size-dependent refractive index are not considered.
The results presented here compare the sensitivity of two
techniques to input noise for different particle radii and data
sets, but assessment of the absolute accuracy of the retrieval
is outside of the scope of the current activity.

4 Results of the measurements

The measurements were performed at NASA GSFC in
Greenbelt, MD, during July–August of 2011. The multi-
wavelength Mie–Raman lidar at NASA GSFC is based on a
Continuum 9050 laser with 50 Hz repetition rate. The output
powers atλ = 355, 532 and 1064 nm are approximately 15,

www.atmos-meas-tech.net/6/2671/2013/ Atmos. Meas. Tech., 6, 2671–2682, 2013
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Table 1. Uncertainties of effective radius (εreff), volume density (εV ) and the real part of CRI (εmR) retrieval with regularization and LE
approaches from 3β + 2α/3β + 1α data sets.

Model reff, µm 0.2 0.3 0.4 0.5

Errors

LE
εreff, % 20/30 20/15 10/15 10/15
εV , % 30/25 20/10 10/15 15/20

mR 0.07/0.05 0.04/0.03 0.03/0.03 0.03/0.03

Regular.
εreff, % 30/20 35/30 35/35 30/40
εV , % 35/30 40/25 45/35 35/40

mR 0.05/0.05 0.04/0.07 0.03/0.1 0.03/0.11

7 and 12 W, respectively. The backscattered light is collected
by a 40 cm-aperture Schmidt–Cassegrain telescope operated
vertically at 0.5 mrad field of view. The system is capable of
detecting three backscattered signals at the laser wavelengths
and two nitrogen Raman signals atλR = 387 and 607 nm.
The outputs of the detectors are recorded at 7.5 m range res-
olution using Licel transient recorders that incorporate both
analog and photon-counting electronics. The full geometrical
overlap of the laser beam and the telescope FOV is achieved
at∼ 1000 m, which determines the lower limit of the full set
of our 3β + 2α measurements due to the difficulty of calcu-
lating aerosol extinction in the overlap region.

For each profile, 6000 laser pulses were accumulated so
the temporal resolution of the measurements was 2 min.
The measurements were performed both in day- and night-
time, but the full set of the measurements containing both
backscatter and Raman signals could be acquired only in the
nighttime. So in this paper, only the results of the nighttime
measurements are presented. The vertical profiles of the tem-
perature and relative humidity were available from radioson-
des launched at the Howard University research campus in
Beltsville, MD, approximately 10 km away from GSFC.

As shown in a previous section, for the retrieval of bulk
particle properties, the number of input optical data can be
reduced while maintaining good performance of the retrieval
at least for the case when the fine mode dominates in the PSD
as is the typical situation for the summer season in Maryland
(Dubovik et al., 2002). Thus, instead of using the full 3β+2α

measurements, the reduced set of 3β + 1α where extinction
at 532 nm is excluded was used. This data reduction signif-
icantly simplifies data processing, becauseα532 determined
from Raman nitrogen scattering with 2 min temporal resolu-
tion is characterized by significant uncertainty. But even for
calculations of particle extinction at 355 nm from the Raman
nitrogen signal, the vertical resolution was degraded to im-
prove the signal-to-noise ratio. In our calculations, the verti-
cal resolution varied with height from 75 m (at 1000 m) up to
200 m (at 5000 m). The lidar signals were also smoothed in
the temporal domain by using a sliding average of 3 profiles.
The effective temporal resolution of the result was, therefore,
approximately 4 min. The particle depolarization at 355 nm
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Fig.4. Aerosol extinction at 355 nm on the night of 20-21 July 2011 calculated by Klett method.  

 

Fig. 4. Aerosol extinction at 355 nm on the night of 20–21 July
calculated using the Klett method.

in our measurements was below 5 %, indicating nearly spher-
ical particles; thus all retrievals presented in this section were
obtained from the 3β + 1α measurements with the LE algo-
rithm that used kernel functions for spherical particles.

To illustrate the application of the linear estimation tech-
nique for the retrieval of a time series of particle parame-
ters, we have chosen measurements performed during the
nights of 20–21 and 21–22 July 2011. For these nights,
five-day backward trajectories of the airmasses affecting the
study area were calculated by the HYSPLIT-4 (Draxler and
Rolph, 2013) model. On the night of 20–21 July, at 500 and
1500 m the airmasses had their origins over the Midwest of
the United States and followed a path through the areas of
the Great Lakes, acquiring pollution-generated aerosols as
they traveled. On the night of 21–22 July, the origin of the
airmasses shifted to the southern United States and the air-
masses also followed a path over polluted areas near the
Great Lakes.

4.1 20–21 July measurements

The structure of the PBL during the night of 20–21 July is
illustrated by Fig. 4. The particle extinction at 355 nm is cal-
culated by the Klett method (Klett, 1985) assuming the lidar
ratio to be 70 sr, which was the average value of the lidar ratio
derived from the Raman measurements. We should empha-
size that the Klett profiles are not used in retrievals and the
only reason for showing these is to illustrate the fine struc-
ture of the aerosol layers, because the height resolution of
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Fig.5. Spatio-temporal distribution of (a) particle extinction at 355 nm calculated from the 

nitrogen Raman signal together with (b) particle volume, (c) effective radius and (d) the real part 

of the complex refractive index on 21 July 2011. 

 

Fig. 5. Spatio-temporal distribution of(a) particle extinction at
355 nm calculated from the nitrogen Raman signal together with
(b) particle volume,(c) effective radius and(d) the real part of the
complex refractive index on 21 July 2011.

the Klett calculation is 7.5 m while the Raman technique re-
quires more spatial and temporal averaging of the data. The
top of the PBL is below 3500 m, although weak aerosol lay-
ers are observed up to approximately 4000 m. However, the
optical density of these layers is too low for reliable compu-
tations of particle extinction and backscattering by the Ra-
man method, so we limit the height range where the optical
data are inverted to particle properties to altitudes less than
3200 m.

The spatio-temporal distribution of particle extinction at
355 nm calculated from the nitrogen Raman signal is shown
in Fig. 5a. In the period from 00:40 UTC to 03:00 UTC a re-
gion of high aerosol loading, with extinction coefficient up to
0.4 km−1 , extended up to∼ 1400 m. Above that heightα355
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Fig.6. Time series of (a) particle volume, number density and (b) effective radius, real part of the 

refractive index obtained from lidar measurements on 21 July 2011. The lidar derived parameters 

are averaged in layers of 200 m thickness and centered at 1100 m (open symbols) and 2500 m 

(solid symbols).  
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Fig.6. Time series of (a) particle volume, number density and (b) effective radius, real part of the 

refractive index obtained from lidar measurements on 21 July 2011. The lidar derived parameters 

are averaged in layers of 200 m thickness and centered at 1100 m (open symbols) and 2500 m 

(solid symbols).  

Fig. 6. Time series of(a) particle volume and number density to-
gether with(b) effective radius and real part of the refractive in-
dex obtained from lidar measurements on 21 July 2011. The lidar-
derived parameters are averaged in layers of 200 m thickness and
centered at 1100 m (open symbols) and 2500 m (solid symbols).

dropped to∼ 0.15 km−1. After 03:00 UTC a second layer ap-
peared at 2000 m and aerosols became distributed more uni-
formly through the PBL. The retrieved spatio-temporal dis-
tributions of the particle bulk parameters, such as volume
density, effective radius and the real part of the refractive in-
dex, are shown in Fig. 5b–d. The particle volume follows the
extinction coefficient, meaning that the effective radius and
the refractive index did not vary significantly. The real part
of the refractive index is quite oscillatory in the region char-
acterized by lower particle extinction (above 2000 m during
00:40–03:00 UTC), likely due to the propagation of errors in
the optical data, but after 03:00 UTC, when aerosols are dis-
tributed more uniformly through the PBL,mR becomes more
stable and drops to approximately 1.4.

To quantify variations of the retrieved parameters, Fig. 6
shows the time series of the volume, number density, ef-
fective radius and the real part of the refractive index in
two layers of 200 m thickness centered at 1100 and 2500 m
where, inside of these layers, the parameters are averaged.
The volume density at 1100 m drops from approximately
50 µm3 cm−3 at 00:40 UTC to∼ 30 µm3 cm−3 at 04:00 UTC,
whileV at 2500 m rises and after 04:00 UTC the volume den-
sities in both layers have similar values. The number densi-
ties behave in a similar manner. Effective radii for both lay-
ers are also similar and rise slightly with time from 0.22

www.atmos-meas-tech.net/6/2671/2013/ Atmos. Meas. Tech., 6, 2671–2682, 2013
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Fig.7. Aerosol extinction at 355 nm on the night of 21-22 July calculated using the Klett method.  

 

 

Fig. 7. Aerosol extinction at 355 nm on the night of 21–22 July
calculated using the Klett method. The assumed lidar ratio is 70 sr.

to 0.24 µm. The real part of the complex refractive index
(CRI) at 2500 m is larger than that in the 1100 m layer at
01:00 UTC, but by 05:00 UTCmR in both layers is approxi-
mately 1.4. We estimate the uncertainties of the effective ra-
dius and volume retrieval to be below 30 and 25 %, respec-
tively. The uncertainty of the real part of the CRI is±0.05.
Meanwhile the uncertainty of the relative change in the pa-
rameters should be lower, because the absolute uncertainty
includes biases introduced by the existence of a “null space”
and by the choice of the “search space” for the particle radii
and CRI. These latter biases appear to have influenced all
retrievals similarly since we do not see large changes in the
retrieved radii and CRI.

The retrieved imaginary part of the refractive index is
about 0.006 and does not show significant variation during
the night. It should be noted, however, that the uncertainty in
the retrieval ofmI is high (about 50 % formI > 0.005), so any
changes inmI due to the uptake of water by the particles are
beyond the sensitivity of the method and cannot be revealed.

4.2 22 July measurements

In contrast to 21 July the aerosol extinction on 22 July shows
significant variation. As presented in Fig. 7, which shows
particle extinction at 355 nm calculated by the Klett method
using a lidar ratio of 70 sr, the top of the boundary layer
drifts downward during the night from an elevation of 2.2 km
to 1.7 km. Between 03:30 UTC and 05:00 UTC a strong in-
crease in extinction occurs, which is likely due to an intru-
sion of an external atmospheric layer. Figure 8 shows the
spatio-temporal distribution of aerosol extinction at 355 nm
calculated from the Raman nitrogen signal, retrieved volume
density, effective radius, and the real part of the refractive
index. On the color images forreff andmR the region with
low particle extinction is removed (this region is marked
in Fig. 8a with a solid line), because no reliable retrieval
could be performed there. Again, as on 21 July, the variation
of the volume density follows the particle extinction, while
the effective radius is quite stable around a mean value of
reff ≈ 0.24 µm. Note that the enhancement of the particle ex-
tinction after 03:30 UTC does not have a significant effect
on the retrieved effective radius values. The value ofmR in-
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Fig.8. Spatio-temporal distribution of (a) particle extinction at 355 nm calculated from the 

Raman nitrogen signal together with (b) particle volume, (c) effective radius and (d) the real part 

of the complex refractive index on 22 July 2011. 
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Fig.8. Spatio-temporal distribution of (a) particle extinction at 355 nm calculated from the 

Raman nitrogen signal together with (b) particle volume, (c) effective radius and (d) the real part 

of the complex refractive index on 22 July 2011. 

 

 

Fig. 8. Spatio-temporal distribution of(a) particle extinction at
355 nm calculated from the Raman nitrogen signal together with
(b) particle volume,(c) effective radius and(d) the real part of the
complex refractive index on 22 July 2011.

side the region with enhanced extinction (after 03:30 UTC) is
lower, about 1.43, while outside that regionmR is about 1.46.
To illustrate the variation of the particle parameters, Fig. 9
shows the time series of volume, number density, effective
radius andmR for two height layers centered at 1200 and
1600 m with thickness of 200 m. The particle volume density
rises with time in both layers, reaching a maximum value
between 03:30 UTC and 05:00 UTC. This enhancement cor-
relates with the rise of the particle number density. The ef-
fective radius rises slightly from 0.23 to 0.26 µm during the
night, while the real part of the refractive index in both lay-
ers decreases from 1.46 to 1.43. The decrease in the value of
mR is likely due to water uptake by the particles. At the same
time, simulation results presented in Fig. 3a demonstrate that
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Fig. 9. Time series of (a) particle volume and number density together with (b) effective radius 

and the real part of the refractive index retrieved from the lidar measurements on 22 July 2011. 

The lidar derived parameters are averaged in layers of 200 m thickness and centered at 1200 m 

(open symbols) and 1600 m (solid symbols) height.  
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Fig. 9. Time series of (a) particle volume and number density together with (b) effective radius 

and the real part of the refractive index retrieved from the lidar measurements on 22 July 2011. 

The lidar derived parameters are averaged in layers of 200 m thickness and centered at 1200 m 

(open symbols) and 1600 m (solid symbols) height.  

 

 

Fig. 9. Time series of(a) particle volume and number density to-
gether with(b) effective radius and the real part of the refractive
index retrieved from the lidar measurements on 22 July 2011. The
lidar-derived parameters are averaged in layers of 200 m thickness
and centered at 1200 m (open symbols) and 1600 m (solid symbols)
height.

the use of a reduced 3β + 1α data set may lead to a decrease
of sensitivity to small particle sizes, which may explain the
smoothness of the time series for the effective radius shown.

4.3 Comparison of LE and regularization retrievals

All the retrievals presented above were obtained using a re-
duced 3β+1α data set and the LE method. For an evaluation
of such an approach it is important to compare the results of
the LE and regularization algorithms when applied to both
3β + 2α and 3β + 1α data sets. The results of such com-
parison are given in this section. For this testing, we have
chosen the measurements of 21 July. The calculated aerosol
extinction and backscattering coefficients were averaged in-
side the 2000–2500 m height layer, and the retrieved particle
properties are shown in Fig. 10. The volume densities ob-
tained with the regularization and LE algorithms from both
3β+2α and 3β+1α data sets are similar. The inversion of the
3β + 2α data set with regularization leads to results that are
generally consistent with the LE approach, but the retrieved
volume density is characterized by higher scattering of the
plot points. Removingα532 from the data set stabilizes the
inversion with regularization, thus confirming the high sen-
sitivity of the retrieval to errors in the extinction coefficient
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Fig.10. Retrieval of (a) effective radius, (b) volume density and (c) the real part of CRI from 

measurements  on the night of 20-21 July 2011, the optical data are averaged in 2000-2500 m 

layer.  Results are given for regularization and LE techniques applied to 3β+2 and 3β+1 

measurements. 

 

Fig. 10. Retrieval of(a) effective radius,(b) volume density and
(c) the real part of CRI from measurements on the night of 20–
21 July 2011; the optical data are averaged in 2000–2500 m layer.
Results are given for regularization and LE techniques applied to
3β + 2α and 3β + 1α measurements.

at 532 nm. It demonstrates also that the LE approach is more
tolerant to noise in the input data. The time series of effec-
tive radius obtained from 3β + 1α with LE is more stable
compared to the same retrieval using 3β + 2α, but 3β + 1α

retrievals are shifted to higher values, which is in agreement
with the simulation results for small particles in Fig. 3a. The
results obtained with the regularization approach are consis-
tent with LE.

The time series of the real part of CRI obtained with 3β +

2α and 3β + 1α data sets are similar, but, again, including
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Fig.11. Effective radius and the real part of the refractive index obtained from AERONET and 

lidar retrievals during the period of 20 - 23 July 2011. Lidar retrievals are given for the height 

layers at 1100 m (21 July) and 1200 m (22 July). 

Fig. 11. Effective radius and the real part of the refractive index
obtained from AERONET and lidar retrievals during the period of
20–23 July 2011. Lidar retrievals are given for the height layers at
1100 m (21 July) and 1200 m (22 July).

α532 leads to higher scattering of data points. ThemR re-
trieved with LE and regularization has similar behavior, but
between 00:30 and 02:30 results obtained with regulariza-
tions are higher (1.48 comparing to 1.45); still this difference
is inside the uncertainty of the method which we estimate
as±0.05. Thus we can conclude that for all three particle
parameters the difference between results obtained from the
full and reduced data sets does not exceed the specified un-
certainty of the method. Retrievals performed with LE and
regularization are therefore consistent, but the LE algorithm
operates more stably.

5 Comparison with AERONET retrievals

To evaluate the retrievals made here by use of the linear es-
timation technique, we compared the lidar-derived effective
radius and complex refractive index with the results provided
by AERONET (Dubovik and King, 2000). The lidar profiles
are available only above 1000 m and AERONET retrievals
are column averages; thus the two instruments are not mea-
suring the same quantities. However, the backscattering pro-
files did not show significant variations below 1000 m and the
retrievals above 1000 m also do not show large variations.
Therefore, we believe that such validation is reasonable in
the cases shown here. In our sessions, the first lidar sounding
started approximately 1.5 h after the last AERONET mea-
surement, so, given the generally stable conditions, we take
the time gap to not be very significant.

Figure 11 shows the time series of effective radius and the
real part of CRI obtained from AERONET and the lidar re-
trievals during the period of 20–23 July 2011. Lidar retrievals
are given for the height layers at 1100 m (21 July) and 1200 m
(22 July). Effective radius provided by AERONET presents
significant scattering: for these days it varied between 0.2 µm
and 0.3 µm with mean value 0.24 µm. The mean effective ra-
dius derived from the lidar measurements for 21 and 22 July

is 0.23 µm. The real part of the refractive index retrieved
by AERONET does not display a significant spectral depen-
dence and, at 674 nm, it varies between 1.35 and 1.49 dur-
ing for 20–23 July period with a mean value 1.41. The mean
value of the real part obtained from the lidar measurements is
1.42. Thus, the retrievals from lidar and AERONET for both
effective radius and the real part of the CRI are in reasonable
agreement.

One of the main AERONET products is the column-
integrated particle volume. To get this same quantity from
lidar measurements the volume density profile was extrap-
olated down to the ground, assuming that below a height of
1 km the volume density is constant. The lidar backscattering
profiles do not indicate strong variation in the vertical so we
do not expect this approximation to introduce large uncer-
tainties. The column-integrated particle volume provided by
AERONET at 23:00 UTC on 20 July is 0.109 µm3 µm−2 for
the total PSD and 0.077 µm3 µm−2 when only the fine mode
is considered. We present these two quantities as the lidar re-
trievals are known to be less sensitive to the coarse mode of
the PSD (Veselovskii et al., 2004). The lidar-derived particle
column volume during the night varied from 0.075 µm3 µm2

to 0.1 µm3 µm−2, which is below the AERONET value for
the total PSD, but higher than the volume obtained for the
fine mode only. Extrapolation of the lidar measurements to
the ground can be a source of error, but still the agreement
between lidar- and AERONET-derived values is reasonable.
On 22 July, the top of the PBL was below 2 km, so the rel-
ative contribution of the error due to extrapolation of the
volume profile from 1 km to the ground could be large, and
therefore the corresponding column-integrated volume was
not considered.

We conclude that, though the comparison of AERONET-
and lidar-derived parameters cannot be considered as valida-
tion still lidar estimations of particle parameters are in rea-
sonable agreement with those from AERONET.

6 Discussion and conclusion

We have presented the results of the application of the lin-
ear estimation technique to lidar measurements performed in
July 2011 at NASA GSFC. The intention of this research was
to show that multiwavelength lidars are able not only to pro-
vide vertical profiles of particle properties but also to reveal
the spatio-temporal evolution of aerosol features. The desire
to retrieve time series of particle parameters with high tem-
poral resolution leads to the question of whether useful re-
trievals are possible with a reduced number of input data. The
potential elimination from the input data set of the aerosol
extinction calculated at 607 nm is attractive due to the signif-
icant averaging required in that measurement to reduce the
statistical uncertainties to the desired∼ 10 %. Also, recent
sensitivity analyses (Perez-Ramirez et al., 2013) indicate that
errors in extinction coefficients have the largest impact on
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retrieved particle properties, supporting the desire to exclude
this measurement from the input data set if possible. The re-
sults of numerical simulations presented here indicate that,
in fact, it is possible to exclude extinction at 607 nm from
the input data while still providing a large amount of useful
information about particle properties. The application of the
LE algorithms to long-term 3β + 2α and 3β + 1α measure-
ments demonstrates also that the results obtained are consis-
tent at least for PSDs that are dominated by the fine mode.

Finally, 3β + 1α nighttime measurements acquired on 21
and 22 July were inverted to particle bulk properties with
the LE algorithm. The results obtained confirm that the algo-
rithm operates stably and that time series of particle param-
eters measured with 4 min resolution are provided without
significant oscillations. We estimate the uncertainty of effec-
tive radius and the volume density retrieval as 30 and 25 %,
respectively, whereas uncertainty for the retrieval of the real
part of CRI is estimated to be±0.05. Estimation of the imag-
inary part of CRI is possible only if we have some initial idea
of the range ofmI variation. Long-term AERONET measure-
ments demonstrate that aerosols over GSFC are generally
low-absorbing and thatmI generally is less than 0.015, so
this value can be used as a constraint under most conditions
in the Greenbelt, MD area. For this situationmI is estimated
with an uncertainty of 50 % in the range of 0.005–0.015.

An important part of the evaluation of the LE approach
is the comparison with AERONET, which today is consid-
ered as one of the most reliable sources of column parti-
cle parameters. The comparisons presented here show good
agreement between the results obtained from the two instru-
ments. Still, the comparisons performed cannot be consid-
ered as validation due to the different nature of the retrievals
(column-oriented for AERONET and profiles for the lidar,
where the profiles do not extend to the ground). Compari-
son of lidar measurements with AERONET and airborne in
situ measurements should be performed at sites characterized
by different types of particles and their mixtures for further
investigation of the capabilities of these new retrieval meth-
ods. Also, spheroidal scattering models should be used when
treating particles of irregular shape.

Finally, from the practical standpoint, our work shows that
the linear estimation approach is computationally quite fast.
For example, the inversion of an entire night of measure-
ments takes approximately 10 min using a standard PC. The
application of the LE and regularization techniques to the
same data sets demonstrates also that LE is more tolerant to
noise in input data. Thus, the LE technique used with multi-
wavelength HSRL or Raman systems has significant poten-
tial for air- and space-borne particle observations where data
volumes can become quite large and where random uncer-
tainties may be high.
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