57 research outputs found

    DeepIso - A global open database of stable isotope ratios and elemental contents for deep-sea ecosystems.

    Full text link
    Stable isotopes have been instrumental to many key-findings about deep-sea ecosystem functioning, particularly in chemosynthesis-based habitats (hydrothermal vents, cold seeps). However, constraining sampling logistics commonly limit the scope, extent, and therefore insights drawn from isotope-based deep-sea studies. Overall, much is left to discover about factors globally influencing food web structure in deep-sea ecosystems. In this context, it is crucial that all generated data are easily discoverable, available and reusable. DeepIso is a collaborative effort to produce a global compilation of stable isotope ratios and elemental contents in organisms from deep-sea ecosystems. In doing so, it aims to provide the deep-sea community with an open data analysis tool that can be used in the context of future ecological research, and to help deep-sea researchers to use stable isotope markers at their full efficiency. The database, accessible under CC-BY licence at https://doi.org/10.17882/76595, currently contains 18677 fully documented measurements. Archived parameters include δ13C (n = 4587), δ15N (n = 4388), δ34S (n = 951), %C (n = 2740), %N (n = 2741), %S (n = 752) and C/N ratio (n = 2518). Those measurements pertain to 4378 distinct samples belonging to 493 taxa, plus sediments, suspended particulate organic matter, plankton and detritus. Samples were taken between 1989 and 2018 in multiple environments (hydrothermal vents, cold seeps, cold water coral reefs, and other benthic or pelagic environments) and at depths ranging up to 5209 meters. To maximise the scope of the project, we are looking to integrate more data, either underlying published articles, from grey literature, or even unpublished. We’ll be happy to assist in data formatting and publication. If you are willing to contribute, or simply if you have feedback about the database, please get in touch via [email protected]

    Building up DeepIso - A global open database of stable isotope ratios and elemental contents for deep-sea ecosystems.

    Full text link
    Stable isotopes have been instrumental to many key-findings about deep-sea ecosystem functioning, particularly in chemosynthesis-based habitats (hydrothermal vents, cold seeps). However, constraining sampling logistics commonly limit the scope, extent, and therefore insights drawn from isotope-based deep-sea studies. Overall, much is left to discover about factors globally influencing food web structure in deep-sea ecosystems. In this context, it is crucial that all generated data are easily discoverable, available, and reusable. DeepIso is a collaborative effort to produce a global compilation of stable isotope ratios and elemental contents in organisms from deep-sea ecosystems. In doing so, it aims to provide the deep-sea community with an open data analysis tool that can be used in the context of future ecological research, and to help deep-sea researchers to use stable isotope markers at their full efficiency. The database, accessible under CC-BY licence at https://doi.org/10.17882/76595, currently contains 18677 fully documented measurements. Archived parameters include δ13C (n = 4587), δ15N (n = 4388), δ34S (n = 951), %C (n = 2740), %N (n = 2741), %S (n = 752) and C/N ratio (n = 2518). Those measurements pertain to 4378 distinct samples belonging to 493 taxa, plus sediments, suspended particulate organic matter, plankton and detritus. Samples were taken between 1989 and 2018 in multiple environments (hydrothermal vents, cold seeps, cold water coral reefs, and other benthic or pelagic environments) and at depths ranging up to 5209 meters. To maximise the scope of the project, we are looking to integrate more data, either underlying published articles, from grey literature, or even unpublished. We’ll be happy to assist in data formatting and publication. If you are willing to contribute, or simply if you have feedback about the database, please get in touch via [email protected]

    Specific niche requirements underpin multidecadal range edge stability, but may introduce barriers for climate change adaptation

    Get PDF
    Aim: To investigate some of the environmental variables underpinning the past and present distribution of an ecosystem engineer near its poleward range edge. Location: >500 locations spanning >7,400 km around Ireland. Methods: We collated past and present distribution records on a known climate change indicator, the reef-forming worm Sabellaria alveolata (Linnaeus, 1767) in a biogeographic boundary region over 182 years (1836–2018). This included repeat sampling of 60 locations in the cooler 1950s and again in the warmer 2000s and 2010s. Using species distribution modelling, we identified some of the environmental drivers that likely underpin S. alveolata distribution towards the leading edge of its biogeographical range in Ireland. Results: Through plotting 981 records of presence and absence, we revealed a discontinuous distribution with discretely bounded sub-populations, and edges that coincide with the locations of tidal fronts. Repeat surveys of 60 locations across three time periods showed evidence of population increases, declines, local extirpation and recolonization events within the range, but no evidence of extensions beyond the previously identified distribution limits, despite decades of warming. At a regional scale, populations were relatively stable through time, but local populations in the cold Irish Sea appear highly dynamic and vulnerable to local extirpation risk. Contemporary distribution data (2013–2018) computed with modelled environmental data identified specific niche requirements which can explain the many distribution gaps, namely wave height, tidal amplitude, stratification index, then substrate type. Main conclusions: In the face of climate warming, such specific niche requirements can create environmental barriers that may prevent species from extending beyond their leading edges. These boundaries may limit a species’ capacity to redistribute in response to global environmental change

    Association of Gender with Clinical Expression, Quality of Life, Disability, and Depression and Anxiety in Patients with Systemic Sclerosis

    Get PDF
    OBJECTIVES: To assess the association of gender with clinical expression, health-related quality of life (HRQoL), disability, and self-reported symptoms of depression and anxiety in patients with systemic sclerosis (SSc). METHODS: SSc patients fulfilling the American College of Rheumatology and/or the Leroy and Medsger criteria were assessed for clinical symptoms, disability, HRQoL, self-reported symptoms of depression and anxiety by specific measurement scales. RESULTS: Overall, 381 SSc patients (62 males) were included. Mean age and disease duration at the time of evaluation were 55.9 (13.3) and 9.5 (7.8) years, respectively. One-hundred-and-forty-nine (40.4%) patients had diffuse cutaneous SSc (dcSSc). On bivariate analysis, differences were observed between males and females for clinical symptoms and self-reported symptoms of depression and anxiety, however without reaching statistical significance. Indeed, a trend was found for higher body mass index (BMI) (25.0 [4.1] vs 23.0 [4.5], p = 0.013), more frequent dcSSc, echocardiography systolic pulmonary artery pressure >35 mmHg and interstitial lung disease in males than females (54.8% vs 37.2%, p = 0.010; 24.2% vs 10.5%, p = 0.003; and 54.8% vs 41.2%, p = 0.048, respectively), whereas calcinosis and self-reported anxiety symptoms tended to be more frequent in females than males (36.0% vs 21.4%, p = 0.036, and 62.3% vs 43.5%, p = 0.006, respectively). On multivariate analysis, BMI, echocardiography PAP>35 mmHg, and anxiety were the variables most closely associated with gender. CONCLUSIONS: In SSc patients, male gender tends to be associated with diffuse disease and female gender with calcinosis and self-reported symptoms of anxiety. Disease-associated disability and HRQoL were similar in both groups

    Isotopic diversity indices: how sensitive to food web structure?

    Get PDF
    Recently revisited, the concept of niche ecology has lead to the formalisation of functional and trophic niches using stable isotope ratios. Isotopic diversity indices (IDI) derived from a set of measures assessing the dispersion/distribution of points in the δ-space were recently suggested and increasingly used in the literature. However, three main critics emerge from the use of these IDI: 1) they fail to account for the isotopic sources overlap, 2) some indices are highly sensitive to the number of species and/or the presence of rare species, and 3) the lack of standardization prevents any spatial and temporal comparisons. Using simulations we investigated the ability of six commonly used IDI to discriminate among different trophic food web structures, with a focus on the first two critics. We tested the sensitivity of the IDI to five food web structures along a gradient of sources overlap, varying from two distinct food chains with differentiated sources to two superimposed food chains sharing two sources. For each of the food web structure we varied the number of species (from 10 to 100 species) and the type of species feeding behaviour (i.e. random or selective feeding). Values of IDI were generally larger in food webs with distinct basal sources and tended to decrease as the superimposition of the food chains increased. This was more pronounced when species displayed food preferences in comparison to food webs where species fed randomly on any prey. The number of species composing the food web also had strong effects on the metrics, including those that were supposedly less sensitive to small sample size. In all cases, computing IDI on food webs with low numbers of species always increases the uncertainty of the metrics. A threshold of ~20 species was detected above which several metrics can be safely used

    Benthic control freaks: Effects of the tubiculous amphipod Haploops nirae on the specific diversity and functional structure of benthic communities

    No full text
    International audienceHaploops nirae is a gregarious tubiculous amphipod which extended its habitat over thousands of hectares in shallow waters of South Brittany bays (Bay of Biscay, Atlantic) over the last decades and created uniquely large and dense tube mats. In the bay of Concarneau, we investigated the specific diversity (i.e. species richness and species composition) and the functional structure (using biological traits) of the macrofauna associated with this Haploops community as a comparison with several surrounding soft-sediment communities to determine the effect of this engineer species on ecosystem functions. We showed that the occurrence of Haploops tubes and individuals significantly modifies sediment features (e.g. change in sediment grain size, increase in C and N organic content) but also largely affect species diversity and benthic composition. The species richness was significantly higher in Haploops community but the species assemblage associated with Haploops habitat was very homogeneous compared to the neighboring habitats and unique with 33% of all species exclusively found in this community. Multivariate analysis (dbRDA) revealed that Haploops density was by far the factor explaining the variation in species composition of benthic communities. No differences in species diversity and assemblage were detected in relationship to Haploops density. A biological trait analysis performed on the whole ecosystem (Haploops included) revealed that Haploops largely dominates the functional structure of the Haploops community by its own functional traits. When performed on selected traits of the associated fauna only (Haploops excluded) the functional structure of the Haploops community was characterized by a greatly reduced proportion of small to medium long lived, sensitive to disturbance, free living or burrowing/tube-building filter-feeding species. H. nirae appears to be a bioengineer and a foundation species that largely modifies its hydro-sedimentary features, controlling diversity and abundances of associated species, and creating a complex set of positive and negative interactions so that a unique benthic assemblage is found in sediments they colonized

    Ecological properties of the simulated food webs (FW).

    No full text
    <p>Ecological properties of the simulated food webs (FW).</p

    Schematic construction of the simulated food webs under (A) the random and (B) the selective feeding scenario.

    No full text
    <p>Codes and description of the different food webs are given in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0084198#pone-0084198-t001" target="_blank">Table 1</a>.</p
    corecore