42 research outputs found

    Breaking the Glass Ceiling: Do Female Auditors in Public Accounting Shine?

    Get PDF
    This honors thesis examines the significance that female auditors have in shaping the public accounting profession. The study investigates the impact of female auditors on various aspects of the profession, including quality, profitability, and risk. By conducting a comprehensive literature review and analyzing gathered data, this research explores the factors that contribute to the influence of female auditors and the implications for the profession. The findings highlight that female auditors do in fact impact the public accounting profession positively. Moreover, the data revealed that gender-diverse audit teams enhance audit quality and firm profitability. Client relationships are also positively influenced, as female auditors often attract both more and financially stable clients. Overall, this thesis contributes to the understanding of the impact of female auditors on the public accounting profession and provides insights for firms to strive for greater gender diversity

    Systematic Review of the Long-Term Effects of Presurgical Orthopedic Devices on Patient Outcomes

    Get PDF
    Objective: To perform a systematic review of the literature to identify the long-term effects of presurgical orthopedic (PSO) device use on patient outcomes. Design: A comprehensive literature review of Embase and Ovid databases was performed to identify all English-language publications related to unilateral cleft lip and palate, presurgical devices, and patient outcomes. Studies were excluded if they did not report patient outcomes beyond 2 years of age, did not describe the use of a PSO device, were case reports (n \u3c 10), or were purely descriptive studies. Main Outcome Measures: Reported patient outcomes following the use of PSO devices. Results: Following a review of all articles by 2 independent reviews, 30 articles were selected for inclusion. Overall, there was no reported consensus as to the long-term effects of PSO devices. Furthermore, this study identified that only 10% of published research controlled for confounding factors that could influence the reported results. Confounding factors that were identified included different operating surgeon, different surgical protocols, and different rates of revision surgeries. Conclusions: Overall, this systematic review identified 2 important conclusions. Firstly, there is no consensus in the literature about the long-term effects of PSO devices on long-term patient outcomes. Secondly, research in this domain is limited by confounding factors that influence the applicability of the reported results

    Chemical characterization of oligosaccharides in the milk of six species of New and Old world monkeys

    Get PDF
    Human and great ape milks contain a diverse array of milk oligosaccharides, but little is known about the milk oligosaccharides of other primates, and how they differ among taxa. Neutral and acidic oligosaccharides were isolated from the milk of three species of Old World or catarrhine monkeys (Cercopithecidae: rhesus macaque (Macaca mulatta), toque macaque (Macaca sinica) and Hamadryas baboon (Papio hamadryas)) and three of New World or platyrrhine monkeys (Cebidae: tufted capuchin (Cebus apella) and Bolivian squirrel monkey (Saimiri boliviensis); Atelidae: mantled howler (Alouatta palliata)). The milks of these species contained 6–8% total sugar, most of which was lactose: the estimated ratio of oligosaccharides to lactose in Old World monkeys (1:4 to 1:6) was greater than in New World monkeys (1:12 to 1:23). The chemical structures of the oligosaccharides were determined mainly by 1H-NMR spectroscopy. Oligosaccharides containing the type II unit (Gal(β1-4)GlcNAc) were found in the milk of the rhesus macaque, toque macaque, Hamadryas baboon and tufted capuchin, but oligosaccharides containing the type I unit (Gal(β1-3)GlcNAc), which have been found in human and many great ape milks, were absent from the milk of all species studied. Oligosaccharides containing Lewis x (Gal(β1-4)[Fuc(α1-3)]GlcNAc) and 3-fucosyl lactose (3-FL, Gal(β1-4)[Fuc(α1-3)]Glc) were found in the milk of the three cercopithecid monkey species, while 2-fucosyl lactose (5'-FL, Fuc(α1-2)Gal(β1-4)Glc) was absent from all species studied. All of these milks contained acidic oligosaccharides that had N-acetylneuraminic acid as part of their structures, but did not contain oligosaccharides that had N-glycolylneuraminic acid, in contrast to the milk or colostrum of great apes which contain both types of acidic oligosaccharides. Two GalNAc-containing oligosaccharides, lactose 3′-O-sulfate and lacto-N-novopentaose I (Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc) were found only in the milk of rhesus macaque, hamadryas baboon and tufted capuchin, respectively. Further research is needed to determine the extent to which the milk oligosaccharide patterns observed among these taxa represent wider phylogenetic trends among primates and how much variation occurs among individuals or species

    Postnatal Changes in the Expression Pattern of the Imprinted Signalling Protein XLαs Underlie the Changing Phenotype of Deficient Mice

    Get PDF
    The alternatively spliced trimeric G-protein subunit XLαs, which is involved in cAMP signalling, is encoded by the Gnasxl transcript of the imprinted Gnas locus. XLαs deficient mice show neonatal feeding problems, leanness, inertia and a high mortality rate. Mutants that survive to weaning age develop into healthy and fertile adults, which remain lean despite elevated food intake. The adult metabolic phenotype can be attributed to increased energy expenditure, which appears to be caused by elevated sympathetic nervous system activity. To better understand the changing phenotype of Gnasxl deficient mice, we compared XLαs expression in neonatal versus adult tissues, analysed its co-localisation with neural markers and characterised changes in the nutrient-sensing mTOR1-S6K pathway in the hypothalamus. Using a newly generated conditional Gnasxl lacZ gene trap line and immunohistochemistry we identified various types of muscle, including smooth muscle cells of blood vessels, as the major peripheral sites of expression in neonates. Expression in all muscle tissues was silenced in adults. While Gnasxl expression in the central nervous system was also developmentally silenced in some midbrain nuclei, it was upregulated in the preoptic area, the medial amygdala, several hypothalamic nuclei (e.g. arcuate, dorsomedial, lateral and paraventricular nuclei) and the nucleus of the solitary tract. Furthermore, expression was detected in the ventral medulla as well as in motoneurons and a subset of sympathetic preganglionic neurons of the spinal cord. In the arcuate nucleus of Gnasxl-deficient mice we found reduced activity of the nutrient sensing mTOR1-S6K signalling pathway, which concurs with their metabolic status. The expression in these brain regions and the hypermetabolic phenotype of adult Gnasxl-deficient mice imply an inhibitory function of XLαs in energy expenditure and sympathetic outflow. By contrast, the neonatal phenotype of mutant mice appears to be due to a transient role of XLαs in muscle tissues

    Speech Communication

    Get PDF
    Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NSO7040)National Institutes of Health (Grant 5 R01 NS04332)National Institutes of Health (Grant 5 R01 NS21183)National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 1 PO1-NS23734)National Science Foundation (Grant BNS 8418733)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0290)National Institutes of Health (Grant RO1-NS21183), subcontract with Boston UniversityNational Institutes of Health (Grant 1 PO1-NS23734), subcontract with the Massachusetts Eye and Ear Infirmar

    In vivo-Hautkrebsdiagnose mittels optischer Kohärenztomographie

    No full text

    Detecting clonemate pairs in multicellular diploid clonal species based on a shared heterozygosity ( SH ) index

    No full text
    Clonal reproduction, the formation of nearly identical individuals via mitosis in the absence of genetic recombination, is a very common reproductive mode across plants, fungi and animals. To detect clonal genetic structure, genetic similarity indices based on shared alleles are widely used, such as the Jaccard index, or identity by state. Here we propose a new pairwise genetic similarity index, the SH index, based on segregating genetic marker loci (typically single nucleotide polymorphisms) that are identically heterozygous for pairs of samples (NSH). To test our method, we analyse two old seagrass clones (Posidonia australis, estimated to be around 8500 years old; Zostera marina, >750 years old) along with two young Z. marina clones of known age (17 years old). We show that focusing on shared heterozygosity amplifies the power to distinguish sample pairs belonging to different clones compared to methods focusing on all shared alleles. Our proposed workflow can successfully detect clonemates at a location dominated by a single clone. When the collected samples involve two or more clones, the SH index shows a clear gap between clonemate pairs and interclone sample pairs. Ideally NSH should be on the order of approximately ≥3000, a number easily achievable via restriction-site associated DNA (RAD) sequencing or whole-genome resequencing. Another potential application of the SH index is to detect possible parent–descendant pairs under selfing. Our proposed workflow takes advantage of the availability of the larger number of genetic markers in the genomic era, and improves the ability to distinguish clonemates from nonclonemates in multicellular diploid clonal species

    Cellular MRI Reveals Altered Brain Arrest of Genetically Engineered Metastatic Breast Cancer Cells

    No full text
    Purpose. The combined use of anatomical magnetic resonance imaging (MRI), cellular MRI, and bioluminescence imaging (BLI) allows for sensitive and improved monitoring of brain metastasis in preclinical cancer models. By using these complementary technologies, we can acquire measurements of viable single cell arrest in the brain after systemic administration, the clearance and/or retention of these cells thereafter, the growth into overt tumours, and quantification of tumour volume and relative cancer cell viability over time. While BLI is very useful in measuring cell viability, some considerations have been reported using cells engineered with luciferase such as increased tumour volume variation, changes in pattern of metastatic disease, and inhibition of in vivo tumour growth. Procedures. Here, we apply cellular and anatomical MRI to evaluate in vivo growth differences between iron oxide labeled naïve (4T1BR5) and luciferase-expressing (4T1BR5-FLuc-GFP) murine brain-seeking breast cancer cells. Balb/C mice received an intracardiac injection of 20,000 cells and were imaged with MRI on days 0 and 14. Mice that received 4T1BR5-FLuc-GFP cells were also imaged with BLI on days 0 and 14. Results. The number of signal voids in the brain (representing iron-labeled cancer cells) on day 0 was significantly higher in mice receiving 4T1BR5 cells compared to mice receiving 4T1BR5-FLuc-GFP cells (p<0.0001). Mice that received 4T1BR5 cells also had significantly higher total brain tumour burden and number of brain metastases than mice that received 4T1BR5-FLuc-GFP cells (p<0.0001). Conclusions. By employing highly sensitive cellular MRI tools, we demonstrate that engineered cells did not form tumours as well as their naïve counterparts, which appear to primarily be due to a reduction in cell arrest. These results indicate that engineering cancer cells with reporter genes may alter their tropism towards particular organs and highlight another important consideration for research groups that use reporter gene imaging to track metastatic cancer cell fate in vivo
    corecore