4,448 research outputs found

    Robotic control of the seven-degree-of-freedom NASA laboratory telerobotic manipulator

    Get PDF
    A computationally efficient robotic control scheme for the NASA Laboratory Telerobotic Manipulator (LTM) is presented. This scheme utilizes the redundancy of the seven-degree-of-freedom LTM to avoid joint limits and singularities. An analysis to determine singular configurations is presented. Performance criteria are determined based on the joint limits and singularity analysis. The control scheme is developed in the framework of resolved rate control using the gradient projection method, and it does not require the generalized inverse of the Jacobian. An efficient formulation for determining the joint velocities of the LTM is obtained. This control scheme is well suited for real-time implementation, which is essential if the end-effector trajectory is continuously modified based on sensory feedback. Implementation of this scheme on a Motorola 68020 VME bus-based controller of the LTM is in progress. Simulation results demonstrating the redundancy utilization in the robotic mode are presented

    Relation of wheat yield with parameters derived from a spectral growth profile

    Get PDF
    An attempt has been made to generate crop growth profiles using multi-date NOAA AVHRR data of wheat-growing season of 1987-88 for the districts of Punjab and Haryana states of India. A profile model proposed by Badhwar was fitted to the multi-date Normalised Difference Vegetation Index (NDVI) values obtained from geographically referenced samples in each district. A novel approach of deriving a set of physiologically meaningful profile parameters has been outlined and the relation of these parameters with district wheat yields has been studied in order to examine the potential of growth profiles for crop-yield modelling. The parameter 'area under the profile' is found to be the best estimator of yield. However, with such a parameter time available for prediction gets reduced. Combination of different profile parameters shows improvement in correlation but lacks the consistency for individual state data

    A survey of trainees’ perspectives on epidural training in the United Kingdom

    Get PDF
    Background: Establishment of epidural analgesia is one of the most difficult technical skills in which to become proficient. We explored the current United Kingdom system of training in epidural insertion amongst trainee members of the Obstetric Anaesthetists’ Association (OAA). Methods: An electronic questionnaire was sent to 452 OAA trainee members in May 2012. Questions were based upon own personal experience, challenges currently faced and the use of epidural simulation to enhance training. Results: Although the majority felt ready and prepared when initially performing epidurals solo, 66% found the experience very stressful and 25% felt under considerable time pressure. Although senior support was readily available, 36% felt uncertain much of the time and 9% were unsure when to call for help. The European Working Time Directive was felt to have impacted upon training by 54% of respondents. 40% believe that there exists more challenging patients who require more experienced operators. Although 53% had used an epidural simulator previously, 84% would recommend its use for trainees and 49% would support simulator use as a compulsory element of training. Conclusions: In spite of changes to the medical profession, there appears to be a robust system of training for epidural analgesia. However, there still exists the need to reduce the impact of the learning curve upon workplace stress for trainees. Whether this involves increased direct supervision for more than just the bare minimum, structured feedback tools to enhance the supervisor/trainee experience or the use of high-fidelity epidural simulation remains to be seen

    MRI based patient-specific computer models of vertebrae, ligament and soft tissue with various density for epidural needle insertion simulation

    Get PDF
    Epidural simulations previously used layers of synthetic silicate materials to represent tissues. Graphical modelling has enabled visual representation of vertebrae and tissues. The accuracy with which previous simulators modelled the physical properties of tissue layer deformation, density distributions and reaction force during needle insertion has been lacking. Anatomical models are generally static, not considering individual differences between patients especially in obese. Our developed epidural simulator aimed to solve these issues. MRI scans of patients were taken after receiving epidural. The MRI and pressure measurement data was used to reconstruct a density model of the tissues, ligament and vertebrae taking into account the internal structure revealed by MRI intensities. Models were generated from MRI matching individual patients with tissue density varying throughout layers, matching the in vivo tissue. When patient MRI is not available a neural network is alternatively used to estimate the patient's ligament thicknesses with over 92% accuracy. A haptic device is incorporated with the graphics tissue model allowing anaesthetists to practice inserting a needle into the simulated epidural space. Changes in pressure, force and resistance to insertion can be felt as the needle pierces each layer of fat and ligament. The main problem with learning to perform epidural is the inability to see the needle location beneath the skin. MRI reveals the internal tissue structure so that anaesthetists can practice insertions on patient-specific models, visualising epidural space distance and needle obstructions. The developed simulator provides a realistic platform to practice and reduces risks of problems during in-vivo procedures

    Haptic feedback from human tissues of various stiffness and homogeneity

    Get PDF
    This work presents methods for haptic modelling of soft and hard tissue with varying stiffness. The model provides visualization of deformation and calculates force feedback during simulated epidural needle insertion. A spring-mass-damper (SMD) network is configured from magnetic resonance image (MRI) slices of patient’s lumbar region to represent varying stiffness throughout tissue structure. Reaction force is calculated from the SMD network and a haptic device is configured to produce a needle insertion simulation. The user can feel the changing forces as the needle is inserted through tissue layers and ligaments. Methods for calculating the force feedback at various depths of needle insertion are presented. Voxelization is used to fill ligament surface meshes with spring mass damper assemblies for simulated needle insertion into soft and hard tissues. Modelled vertebrae cannot be pierced by the needle. Graphs were produced during simulated needle insertions to compare the applied force to haptic reaction force. Preliminary saline pressure measurements during Tuohy epidural needle insertion are also used as a basis for forces generated in the simulation

    Devices for accurate placement of epidural Tuohy needle for Anaesthesia administration

    Get PDF
    The aim of this project is to design two sterile devices for epidural needle insertion which can measure in real time (i) the depth of needle tip during insertion and (ii) interspinous pressure changes through a pressure measurement device as the epidural needle is advanced through the tissue layers. The length measurement device uses a small wireless camera with video processing computer algorithms which can detect and measure the moving needle. The pressure measurement device uses entirely sterile components including a pressure transducer to accurately measure syringe saline in mmHg. The data from these two devices accurately describe a needle insertion allowing comparison or review of insertions. The data was then cross-referenced to pre-measured data from MRI or ultrasound scan to identify how ligament thickness correlates to our measured depth and pressure data. The developed devices have been tested on a porcine specimen during insertions performed by experienced anaesthetists. We have obtained epidural pressures for each ligament and demonstrated functionality of our devices to measure pressure and depth of epidural needle during insertion. This has not previously been possible to monitor in real-time. The benefits of these devices are (i) to provide an alternative method to identify correct needle placement during the procedure on real patients. (ii) The data describing the speed, depth and pressure during insertion can be used to configure an epidural simulator, simulating the needle insertion procedure. (iii) Our pressure and depth data can be compared to pre-measured MRI and ultrasound to identify previously unknown links between epidural pressure and depth with BMI, obesity and body shapes

    Prevalence and co-infection of Toxoplasma gondii and Neospora caninum in Apodemus sylvaticus in an area relatively free of cats

    Get PDF
    The protozoan parasite Toxoplasma gondii is prevalent worldwide and can infect a remarkably wide range of hosts despite felids being the only definitive host. As cats play a major role in transmission to secondary mammalian hosts, the interaction between cats and these hosts should be a major factor determining final prevalence in the secondary host. This study investigates the prevalence of T. gondii in a natural population of Apodemus sylvaticus collected from an area with low cat density (<2·5 cats/km2). A surprisingly high prevalence of 40·78% (95% CI: 34·07%–47·79%) was observed despite this. A comparable level of prevalence was observed in a previously published study using the same approaches where a prevalence of 59% (95% CI: 50·13%–67·87%) was observed in a natural population of Mus domesticus from an area with high cat density (>500 cats/km2). Detection of infected foetuses frompregnant dams in both populations suggests that congenital transmission may enable persistence of infection in the absence of cats. The prevalences of the related parasite, Neospora caninum were found to be low in both populations (A. sylvaticus: 3·39% (95% CI: 0·12%–6·66%); M. domesticus: 3·08% (95% CI: 0·11%–6·05%)). These results suggest that cat density may have a lower than expected effect on final prevalence in these ecosystems

    Measurement of epidural insertion pressures in labouring women of varying BMIs. Abstract

    Get PDF
    To create high-fidelity epidural simulators it is important to incorporate in vivo epidural pressures.1 This study presents the results of insertion pressures as a Tuohy needle is advanced through to the epidural space on a porcine cadaver followed by a clinical trial of labouring women of varying BMIs. The ultimate aim is to use these measured epidural pressures together with ultrasound and MRI images for the development of a novel epidural simulator to aid training

    On the Paramagnetic Behavior of CaS : Pr Phosphors

    Get PDF
    corecore