57 research outputs found

    Development of infectious cDNA clones of Salmonid alphavirus subtype 3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Salmonid alphavirus (SAV) is a widespread pathogen in European aquaculture of salmonid fish. Distinct viral subtypes have been suggested based on sequence comparisons and some of these have different geographical distributions. In Norway, only SAV subtype 3 have so far been identified. Little is known about viral mechanisms important for pathogenesis and transmission. Tools for detailed exploration of SAV genomes are therefore needed.</p> <p>Results</p> <p>Infectious cDNA clones in which a genome of subtype 3 SAV is under the control of a CMV promoter were constructed. The clones were designed to express proteins that are putatively identical to those previously reported for the SAVH20/03 strain. A polyclonal antiserum was raised against a part of the E2 glycoprotein in order to detect expression of the subgenomic open reading frame (ORF) encoding structural viral proteins. Transfection of the cDNA clone revealed the expression of the E2 protein by IFAT, and in serial passages of the supernatant the presence of infectious recombinant virus was confirmed through RT-PCR, IFAT and the development of a cytopathic effect similar to that seen during infection with wild type SAV. Confirmation that the recovered virus originated from the infectious plasmid was done by sequence identification of an introduced genetic tag. The recombinant virus was infectious also when an additional ORF encoding an EGFP reporter gene under the control of a second subgenomic alphavirus promoter was added. Finally, we used the system to study the effect of selected point mutations on infectivity in Chinook salmon embryo cells. While introduced mutations in nsP2<sub>197</sub>, nsP3<sub>263 </sub>and nsP3<sub>323 </sub>severely reduced infectivity, a serine to proline mutation in E2<sub>206 </sub>appeared to enhance the virus titer production.</p> <p>Conclusion</p> <p>We have constructed infectious clones for SAV based on a subtype 3 genome. The clones may serve as a platform for further functional studies.</p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Direct transfection of viral and plasmid DNA into the liver or spleen of mice.

    No full text

    The microstructure and mechanical properties of austempered ductile iron

    No full text
    This paper represents a summary of experimental results dealing with the time dependence of microstructure and mechanical properties during austempering, and with the austempering temperature dependence of microstructure and mechanical properties. Alloys with a nominal compositions of 3.7 C, 2.5 Si and various controlled amounts of manganese, molybdenum, and nickel were prepared in the MTU foundry. Austenitization at 927° C (1700°F) and 871°C (1600°F) was followed by austempering at temperatures between 230° C (446° F) and 420° C (788° F) at 10°C (18°F) intervals for one hour, and at 316°C (601°F) and 371°C (700° F) for various times from 2 min to 1440 min. Optical and electron microscopy as well as x-ray metallography were used to determine the kinetics and details of the transformations during stages I and II. It is shown that the carbon gradient within the austenite during the transformation controls the rate of Stage I and alloy content controls the rate of Stage II. Interdendritic segregation of alloying elements leads to the presence of significant quantities of untransformed austenite, especially at early austempering times. It is shown that these volumes constitute convenient crack paths, thereby reducing ductility. Minimizing the continuity of those volumes increases ductility, a job aided by a lower austenitizing temperature and a minimum alloy (especially manganese) content. A processing window concept used to optimize ductility at austempering temperatures in excess of 350° C (662° F) is defined by the times needed to avoid excessive untransformed austenite volume (UAV) (the minimum time) and to avoid excessive decomposition of austenite (the maximum time). Tensile strength and ductility are shown to be a function of austenite volume fraction, scale of the microstructure, alloy content, the presence of carbide formed during the austenite transformation, and the presence of intrinsic defects such as eutectic alloy carbides. © 1988 Springer-Verlag New York Inc
    corecore