142 research outputs found
Pan-European backcasting exercise, enriched with regional perspective, and including a list of short-term policy options
This deliverable reports on the results of the third and final pan-European stakeholder meeting and secondly, on the enrichment with a Pilot Area and regional perspective. The main emphasis is on backcasting as a means to arrive at long-term strategies and short-term (policy) actions
Climate change mainstreaming in agriculture: Natural water retention measures for flood and drought risk management
Many EU policies contribute to reducing flood and drought risks, which are projected to increase in many areas due to climate change. The EU Water Blueprint encourages a policy switch from dams, reservoirs, and other grey infrastructure to supporting natural water retention measures, or green infrastructure. Our estimates show that the costs of this switch can be significant for on-farm ponds; however, conservation tillage and (to a lesser extent) shelterbelts appear to be cost-competitive with reservoirs for storing water in the landscape. If the co-benefits, especially climate change mitigation, the reduction of land-use degradation and biodiversity, are taken into account, the cost advantage of these measures increases
FAST PREDETERMINED EQUILIBRIUM DYNAMICS APPLIED TO MAGNETIC SYSTEMS
In this paper, a fast algorithm for implementing the method [1] is proposed for consider-ation. Its application to the problem of modeling microscopic magnetic dynamics is also shown
Report on perceived policy needs and decision contexts
Adaptation to climate change is a new challenge for existing institutions and decision-making processes. In order to assess what form this challenge takes for decision-makers, we conducted interviews and a policy review to determine the perceived policy needs in Austria, Finland, France, Italy, Poland, Romania, Spain and the United Kingdom. In each country, interviews are conducted at the national level and the sub-national (state) level if the national level is not sufficiently active in adaptation planning yet. We focus on general adaptation policy as well as specific sectors for each country, in line with the distribution of MEDIATION case studies. Different countries are at different stages of developing adaptation policy, but the underlying needs are similar across them. We group the needs into nine categories: inter-agency coordination, multi-level governance, mainstreaming, awareness-raising, coping with uncertainty, research needs, tools and information access, financial and human resources, and political commitment. We also look at suggestions for the EU's role in coordinating adaptation policy
ΠΠΈΠ²ΡΠ΅Π½Π½Ρ ΠΏΠΎΠ»ΡΡΠ°Ρ Π°ΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄Ρ ΡΡΠ°Π²ΠΈ Π²ΠΈΠ΄ΡΠ² ΡΠΎΠ΄Ρ ΠΡΠΈΠ²ΠΎΡΠΎΡΠ΅Π½Ρ, ΡΠΊΡ Π·ΡΠΎΡΡΠ°ΡΡΡ Π½Π° ΡΠ΅ΡΠΈΡΠΎΡΡΡ ΠΡΠΈΠΊΠ°ΡΠΏΠ°ΡΡΡ
Medicines of plant origin containing polysaccharides are used in pharmaceutical practice since they exhibit a wide spectrum of thepharmacological activity. Species of the Alchemilla L. genus of the Rosaceae family are of important scientific and practical importance; they contain different groups of biologically active substances (BAS), including phenolic compounds and polysaccharides. The lack of information in the literature on the quantitative content of polysaccharides in this raw material indicates the topicality of research in this direction.
Aim. To isolate and study the polysaccharide composition of the herb of the Alchemilla L. genus species growing in the territory of the Precarpathian region.
Materials and methods. To isolate polysaccharide fractions and study their monomer composition, we used herb of 6 species of the Alchemilla L. genus (Alchemilla (A.) flabellata Buser., A. subcrenata Buser., A. phegophila Juz., A. microdonta Juz., A. hebescens Juz., A. turkulensis PawΡ.) harvested during the mass flowering phase in various areas of the Ivano-Frankivsk region within 2020-2021. The quantitative content of polysaccharide fractions in the raw material studied was determined by the gravimetric method after successive extraction of the raw material with purified water R, hydrochloric acid solution and sodium hydroxide solution, followed by precipitation with 96 % ethanol R. The qualitative monomer composition of polysaccharides was determined by the ascending paper chromatography(PC) and thin-layer chromatography (TLC) in different solvent systems compared to authentic samples of neutral and acidic monosaccharides.
Results and discussion. It was found that the total content of polysaccharide fractions in the herb of the Alchemilla species studied ranged from 7.73 % to 15.35 %, depending on the type of Alchemilla species. The yield of water-soluble polysaccharides (WSP) ranged from 2.62 % to 5.49 %, pectin substances (PS) β from 1.41 % to 2.13 %, hemicellulose (HC) A β from 0.45 % to 2.96 % and HC B β from 2.51 % to 6.44 %. The maximum amount of WSP and HC A was observed in the herb of Alchemilla turkulensis PawΕ. (5.49 % and 2.96 %, respectively), the highest amount of PS and HC B was detected in the herb of Alchemilla phegophila Juz. (2.13 % and 6.44 %, respectively). The composition of monosaccharides was determined by the methods of PC and TLC compared to authentic samples. Glucose and arabinose were identified in the hydrolysates of the WSP of the herb of the Alchemilla L. genus species. The monomer composition of PS of the raw material studied was represented by glucose, arabinose and galactose. Glucose, galactose and xylose were found in the hydrolyzates of HC A fraction; glucose, galactose, arabinose, xylene, rhamnose, glucuronic and galacturonic acids were identified in HC B fraction.
Conclusions. For the first time, polysaccharide complexes have been isolated from 6 species of the Alchemilla L. genus harvested in different areas of the Ivano-Frankivsk region. The monomer composition of sugars has been determinedby the methods of PC and TLC compared to authentic samples of monosaccharides in the hydrolyzates of WSP, PS, HC A and B fractions of species of the Alchemilla L. genus growing in the territory of Precarpathian region. The research results obtained are of practical importance for the further study of the pharmacological activity of the raw material studied and can be used in the development of quality control methods for the medicinal plant raw material and substances obtained from it.Π ΡΠ°ΡΠΌΠ°ΡΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΡΠ΅Π΄ΡΡΠ²Π° ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΠΏΡΠΎΡΠ²Π»ΡΡΡ ΡΠΈΡΠΎΠΊΠΈΠΉ ΡΠΏΠ΅ΠΊΡΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ. ΠΠ°ΠΆΠ½ΠΎΠ΅ Π½Π°ΡΡΠ½ΠΎ-ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅ΡΡ Π²ΠΈΠ΄Ρ ΡΠΎΠ΄Π° ΠΠ°Π½ΠΆΠ΅ΡΠΊΠ° (Alchemilla L.) ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° Π ΠΎΠ·ΠΎΠ²ΡΠ΅ (Rosaceae), ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π³ΡΡΠΏΠΏΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² (ΠΠΠ), ΡΡΠ΅Π΄ΠΈ ΠΊΠΎΡΠΎΡΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ΅Π½ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΈ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Ρ. ΠΡΡΡΡΡΡΠ²ΠΈΠ΅ Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°Ρ
ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄ΠΎΠ² Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΡΡΡΠ΅ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² Π΄Π°Π½Π½ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ.
Π¦Π΅Π»ΡΡ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»ΠΎ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΡΡΠ°Π²Ρ Π²ΠΈΠ΄ΠΎΠ² ΡΠΎΠ΄Π° ΠΠ°Π½ΠΆΠ΅ΡΠΊΠ°, ΠΏΡΠΎΠΈΠ·ΡΠ°ΡΡΠ°ΡΡΠΈΡ
Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ ΠΡΠΈΠΊΠ°ΡΠΏΠ°ΡΡΡ.
ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΡΠΏΠΎΡΠΎΠ±Ρ. ΠΠ»Ρ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Π½ΡΡ
ΡΡΠ°ΠΊΡΠΈΠΉ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΡΠ°Π²Ρ Π²ΠΈΠ΄ΠΎΠ² ΡΠΎΠ΄Π° ΠΠ°Π½ΠΆΠ΅ΡΠΊΠ°, Π·Π°Π³ΠΎΡΠΎΠ²Π»Π΅Π½Π½ΡΡ Π² ΡΠ°Π·Ρ ΠΌΠ°ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ Π² ΡΠ°Π·Π½ΡΡ
ΡΠ΅Π³ΠΈΠΎΠ½Π°Ρ
ΠΠ²Π°Π½ΠΎ-Π€ΡΠ°Π½ΠΊΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 2020 β 2021 Π³Π³.
ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΡΠ°ΠΊΡΠΈΠΉ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄ΠΎΠ² Π² ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΌ ΡΡΡΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π³ΡΠ°Π²ΠΈΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΡΠ»Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΡΡΠ°Π³ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΡΡ ΠΎΡΠΈΡΠ΅Π½Π½ΠΎΠΉ Π²ΠΎΠ΄ΠΎΠΉ Π , ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ Ρ
Π»ΠΎΡΠΈΡΡΠΎΠ²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ Π½Π°ΡΡΠΈΡ Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄Π° Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ 96% ΡΡΠ°Π½ΠΎΠ»ΠΎΠΌ P.
ΠΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄ΠΎΠ² ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΠΎΡΡ
ΠΎΠ΄ΡΡΠ΅ΠΉ Π±ΡΠΌΠ°ΠΆΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ (ΠΠ₯) ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΎΠ½ΠΊΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ (Π’Π‘Π₯) Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
ΡΠ°ΡΡΠ²ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠΌΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ°ΠΌΠΈ Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΡΡ
ΠΈ ΠΊΠΈΡΠ»ΡΡ
ΠΌΠΎΠ½ΠΎΡΠ°Ρ
Π°ΡΠΎΠ².
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΡΡΠ°Π²Π΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΠΌΠ°Π½ΠΆΠ΅ΡΠΊΠΈ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Π½ΡΡ
ΡΡΠ°ΠΊΡΠΈΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π»ΠΎΡΡ ΠΎΡ 7,40 Π΄ΠΎ 15,35 % Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΠΈΠ΄Π° ΡΡΡΡΡ. ΠΡΡ
ΠΎΠ΄ Π²ΠΎΠ΄ΠΎΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄ΠΎΠ² (ΠΠ ΠΠ‘) ΡΠΎΡΡΠ°Π²Π»ΡΠ» 2,15 - 5,49 %, ΠΏΠ΅ΠΊΡΠΈΠ½ΠΎΠ²ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² (ΠΠ) - 1,41 - 2,13 %, Π³Π΅ΠΌΠΈΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Ρ (ΠΠ¦) Π - 0,15 - 2,96 %, ΠΠ¦ Π - 2 ,51 β 6,44 %. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΠ ΠΠ‘ ΠΈ ΠΠ¦ Π Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ Π² ΡΡΠ°Π²Π΅ ΠΌΠ°Π½ΠΆΠ΅ΡΠΊΠΈ ΡΡΡΠΊΡΠ»ΡΡΠΊΠΎΠΉ (5,49 % ΠΈ 2,96 % ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ), Π±ΠΎΠ»ΡΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΠ ΠΈ ΠΠ¦ Π Π±ΡΠ»ΠΎ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ Π² ΡΡΠ°Π²Π΅ ΠΌΠ°Π½ΠΆΠ΅ΡΠΊΠΈ ΡΠ²Π΅ΡΠΎΠ»ΡΠ±ΠΈΠ²ΠΎΠΉ (2,13 % ΠΈ 6,44 % ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ).
ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ₯ ΠΈ Π’Π‘Π₯ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠΌΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ°ΠΌΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ ΡΠΎΡΡΠ°Π² ΠΌΠΎΠ½ΠΎΡΠ°Ρ
Π°ΡΠΎΠ². Π Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π°ΡΠ°Ρ
ΠΠ ΠΠ‘ ΡΡΠ°Π²Ρ Π²ΠΈΠ΄ΠΎΠ² ΡΠΎΠ΄Π° ΠΠ°Π½ΠΆΠ΅ΡΠΊΠ° ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π° Π³Π»ΡΠΊΠΎΠ·Π° ΠΈ Π°ΡΠ°Π±ΠΈΠ½ΠΎΠ·Π°. ΠΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΠΠ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΡΡΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π³Π»ΡΠΊΠΎΠ·ΠΎΠΉ, Π°ΡΠ°Π±ΠΈΠ½ΠΎΠ·ΠΎΠΉ ΠΈ Π³Π°Π»Π°ΠΊΡΠΎΠ·ΠΎΠΉ. Π Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π°ΡΠ°Ρ
ΡΡΠ°ΠΊΡΠΈΠΈ ΠΠ¦ Π ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π° Π³Π»ΡΠΊΠΎΠ·Π°, Π³Π°Π»Π°ΠΊΡΠΎΠ·Π°, ΠΊΡΠΈΠ»ΠΎΠ·Π°; Π²ΠΎ ΡΡΠ°ΠΊΡΠΈΠΈ ΠΠ¦ Π β Π³Π»ΡΠΊΠΎΠ·Π°, Π³Π°Π»Π°ΠΊΡΠΎΠ·Π°, Π°ΡΠ°Π±ΠΈΠ½ΠΎΠ·Π°, ΠΊΡΠΈΠ»ΠΎΠ·Π°, ΡΠ°ΠΌΠ½ΠΎΠ·Π°, Π³Π»ΡΠΊΡΡΠΎΠ½ΠΎΠ²Π°Ρ ΠΈ Π³Π°Π»Π°ΠΊΡΡΡΠΎΠ½ΠΎΠ²Π°Ρ ΠΊΠΈΡΠ»ΠΎΡΡ.
ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄Π½ΡΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ ΠΈΠ· 6 Π²ΠΈΠ΄ΠΎΠ² ΡΠΎΠ΄Π° ΠΠ°Π½ΠΆΠ΅ΡΠΊΠ°, Π·Π°Π³ΠΎΡΠΎΠ²Π»Π΅Π½Π½ΡΡ
ΠΈΠ· 8 ΠΌΠ΅ΡΡ ΠΏΡΠΎΠΈΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ₯ ΠΈ Π’Π‘Π₯ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠΌΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ°ΠΌΠΈ ΠΌΠΎΠ½ΠΎΡΠ°Ρ
Π°ΡΠΈΠ΄ΠΎΠ² Π² ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π°ΡΠ°Ρ
ΡΡΠ°ΠΊΡΠΈΠΉ ΠΠ ΠΠ‘, ΠΠ, ΠΠ¦ Π ΠΈ ΠΠ¦ Π ΡΡΠ°Π²Ρ Π²ΠΈΠ΄ΠΎΠ² ΡΠΎΠ΄Π° ΠΠ°Π½ΠΆΠ΅ΡΠΊΠ°, ΡΠ°ΡΡΡΡΠΈΡ
Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ ΠΡΠΈΠΊΠ°ΡΠΏΠ°ΡΡΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΡΠ°Ρ
Π°ΡΠΎΠ². ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΡΡΡΡΡ ΠΈ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° Π½Π° Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΡΡΠ΅ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΈΠ· Π½Π΅Π³ΠΎ ΡΡΠ±ΡΡΠ°Π½ΡΠΈΠΈ.
Π£ ΡΠ°ΡΠΌΠ°ΡΠ΅Π²ΡΠΈΡΠ½ΡΠΉ ΠΏΡΠ°ΠΊΡΠΈΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΡ Π»ΡΠΊΠ°ΡΡΡΠΊΡ Π·Π°ΡΠΎΠ±ΠΈ ΡΠΎΡΠ»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ
ΠΎΠ΄ΠΆΠ΅Π½Π½Ρ, ΡΠΎ ΠΌΡΡΡΡΡΡ ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄ΠΈ, ΠΎΡΠΊΡΠ»ΡΠΊΠΈ ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈ Π²ΠΈΡΠ²Π»ΡΡΡΡ ΡΠΈΡΠΎΠΊΠΈΠΉ ΡΠΏΠ΅ΠΊΡΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ. ΠΠ°ΠΆΠ»ΠΈΠ²Π΅ Π½Π°ΡΠΊΠΎΠ²ΠΎ-ΠΏΡΠ°ΠΊΡΠΈΡΠ½Π΅ Π·Π½Π°ΡΠ΅Π½Π½Ρ ΠΌΠ°ΡΡΡ Π²ΠΈΠ΄ΠΈ ΡΠΎΠ΄Ρ ΠΡΠΈΠ²ΠΎΡΠΎΡΠ΅Π½Ρ (Alchemilla L.) ΡΠΎΠ΄ΠΈΠ½ΠΈ Π ΠΎΠ·ΠΎΠ²Ρ (Rosaceae), ΡΠΊΡ Π²ΠΌΡΡΡΡΡΡ ΡΡΠ·Π½Ρ Π³ΡΡΠΏΠΈ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ (ΠΠΠ ), ΡΠ΅ΡΠ΅Π΄ ΡΠΊΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊΠΈ ΡΠ΅Π½ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡ
ΠΎΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠ° ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄ΠΈ. ΠΡΠ΄ΡΡΡΠ½ΡΡΡΡ Ρ Π»ΡΡΠ΅ΡΠ°ΡΡΡΠ½ΠΈΡ
Π΄ΠΆΠ΅ΡΠ΅Π»Π°Ρ
ΡΠ½ΡΠΎΡΠΌΠ°ΡΡΡ ΠΏΡΠΎ ΠΊΡΠ»ΡΠΊΡΡΠ½ΠΈΠΉ Π²ΠΌΡΡΡ ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄ΡΠ² Ρ Π·Π°Π·Π½Π°ΡΠ΅Π½ΡΠΉ ΡΠΈΡΠΎΠ²ΠΈΠ½Ρ Π·ΡΠΌΠΎΠ²Π»ΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ Ρ ΡΡΠΎΠΌΡ Π½Π°ΠΏΡΡΠΌΡ.
ΠΠ΅ΡΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ Π±ΡΠ»ΠΎ Π²ΠΈΠ΄ΡΠ»Π΅Π½Π½Ρ ΡΠ° Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄Ρ ΡΡΠ°Π²ΠΈ 6 Π²ΠΈΠ΄ΡΠ² ΡΠΎΠ΄Ρ ΠΡΠΈΠ²ΠΎΡΠΎΡΠ΅Π½Ρ, ΡΠΊΡ Π·ΡΠΎΡΡΠ°ΡΡΡ Π½Π° ΡΠ΅ΡΠΈΡΠΎΡΡΡ ΠΡΠΈΠΊΠ°ΡΠΏΠ°ΡΡΡ.
ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ ΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠ»Ρ Π²ΠΈΠ΄ΡΠ»Π΅Π½Π½Ρ ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄Π½ΠΈΡ
ΡΡΠ°ΠΊΡΡΠΉ Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΡ
Π½ΡΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄Ρ Π±ΡΠ»ΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½ΠΎ ΡΡΠ°Π²Ρ 6 Π²ΠΈΠ΄ΡΠ² ΡΠΎΠ΄Ρ ΠΡΠΈΠ²ΠΎΡΠΎΡΠ΅Π½Ρ (ΠΏΡΠΈΠ²ΠΎΡΠΎΡΠ΅Π½Ρ (ΠΏ.) Π²ΡΡΠ»ΠΎΠΏΠΎΠ΄ΡΠ±Π½ΠΈΠΉ, ΠΏ. Π·Π°ΡΡΠ±ΡΠ°ΡΡΠΈΠΉ, ΠΏ. ΡΠ²ΡΡΠ»ΠΎΠ»ΡΠ±ΠΈΠ²ΠΈΠΉ, ΠΏ. Π΄ΡΡΠ±Π½ΠΎΠ·ΡΠ±ΡΠ°ΡΡΠΈΠΉ, ΠΏ. ΠΏΡΠΈΡΡΠΏΠ»Π΅Π½ΠΈΠΉ, ΠΏ. ΡΡΡΠΊΡΠ»ΡΡΡΠΊΠΈΠΉ), Π·Π°Π³ΠΎΡΠΎΠ²Π»Π΅Π½Ρ Ρ ΡΠ°Π·Ρ ΠΌΠ°ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ²ΡΡΡΠ½Π½Ρ Π² ΡΡΠ·Π½ΠΈΡ
ΡΠ΅Π³ΡΠΎΠ½Π°Ρ
ΠΠ²Π°Π½ΠΎ-Π€ΡΠ°Π½ΠΊΡΠ²ΡΡΠΊΠΎΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΏΡΠΎΡΡΠ³ΠΎΠΌ 2020-2021 ΡΡ. ΠΡΠ»ΡΠΊΡΡΠ½ΠΈΠΉ Π²ΠΌΡΡΡ ΡΡΠ°ΠΊΡΡΠΉ ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄ΡΠ² Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΡΠΉ ΡΠΈΡΠΎΠ²ΠΈΠ½Ρ Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ Π³ΡΠ°Π²ΡΠΌΠ΅ΡΡΠΈΡΠ½ΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΡΠ»Ρ ΠΏΠΎΡΠ»ΡΠ΄ΠΎΠ²Π½ΠΎΠ³ΠΎ Π΅ΠΊΡΡΡΠ°Π³ΡΠ²Π°Π½Π½Ρ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΈ Π²ΠΎΠ΄ΠΎΡ ΠΎΡΠΈΡΠ΅Π½ΠΎΡ Π , ΡΠΎΠ·ΡΠΈΠ½ΠΎΠΌ Ρ
Π»ΠΎΡΠΈΡΡΠΎΠ²ΠΎΠ΄Π½Π΅Π²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ ΡΠ° ΡΠΎΠ·ΡΠΈΠ½ΠΎΠΌ Π½Π°ΡΡΡΡ Π³ΡΠ΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π· ΠΏΠΎΠ΄Π°Π»ΡΡΠΈΠΌ ΠΎΡΠ°Π΄ΠΆΠ΅Π½Π½ΡΠΌ 96 % Π΅ΡΠ°Π½ΠΎΠ»ΠΎΠΌ P. Π―ΠΊΡΡΠ½ΠΈΠΉ ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΈΠΉ ΡΠΊΠ»Π°Π΄ ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄ΡΠ² Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΠΈΡΡ
ΡΠ΄Π½ΠΎΡ ΠΏΠ°ΠΏΠ΅ΡΠΎΠ²ΠΎΡ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡ (ΠΠ₯) ΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΎΠ½ΠΊΠΎΡΠ°ΡΠΎΠ²ΠΎΡ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡ (Π’Π¨Π₯) Ρ ΡΡΠ·Π½ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
ΡΠΎΠ·ΡΠΈΠ½Π½ΠΈΠΊΡΠ², ΠΏΠΎΡΡΠ²Π½ΡΡΡΠΈ Π· Π΄ΠΎΡΡΠΎΠ²ΡΡΠ½ΠΈΠΌΠΈ Π·ΡΠ°Π·ΠΊΠ°ΠΌΠΈ Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΠΈΡ
Ρ ΠΊΠΈΡΠ»ΠΈΡ
ΠΌΠΎΠ½ΠΎΡΡΠΊΡΡΠ².
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΈΡ
Π·ΡΠ°Π·ΠΊΠ°Ρ
ΡΡΠ°Π²ΠΈ Π·Π°Π³Π°Π»ΡΠ½ΠΈΠΉ Π²ΠΌΡΡΡ ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄Π½ΠΈΡ
ΡΡΠ°ΠΊΡΡΠΉ ΠΊΠΎΠ»ΠΈΠ²Π°Π²ΡΡ Π²ΡΠ΄ 7,73 % Π΄ΠΎ 15,35 % Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²ΡΠ΄ Π²ΠΈΠ΄Ρ ΠΏΡΠΈΠ²ΠΎΡΠΎΡΠ½Ρ. ΠΠΈΡ
ΡΠ΄ Π²ΠΎΠ΄ΠΎΡΠΎΠ·ΡΠΈΠ½Π½ΠΈΡ
ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄ΡΠ² (ΠΠ ΠΠ‘) ΡΠΊΠ»Π°Π΄Π°Π² 2,62-5,49 %, ΠΏΠ΅ΠΊΡΠΈΠ½ΠΎΠ²ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ (ΠΠ ) β 1,41-2,13 %, Π³Π΅ΠΌΡΡΠ΅Π»ΡΠ»ΠΎΠ·ΠΈ (ΠΠ¦) Π β 0,45-2,96 %, ΠΠ¦ Π β 2,51-6,44 %. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Ρ ΠΊΡΠ»ΡΠΊΡΡΡΡ ΠΠ ΠΠ‘ Ρ ΠΠ¦ Π ΡΠΏΠΎΡΡΠ΅ΡΡΠ³Π°Π»ΠΈ Π² ΡΡΠ°Π²Ρ ΠΏΡΠΈΠ²ΠΎΡΠΎΡΠ½Ρ ΡΡΡΠΊΡΠ»ΡΡΡΠΊΠΎΠ³ΠΎ (5,49 % ΡΠ° 2,96 % Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎ), Π½Π°ΠΉΠ±ΡΠ»ΡΡΠ΅ ΠΠ ΡΠ° ΠΠ¦ Π Π±ΡΠ»ΠΎ Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ Π² ΡΡΠ°Π²Ρ ΠΏΡΠΈΠ²ΠΎΡΠΎΡΠ½Ρ ΡΠ²ΡΡΠ»ΠΎΠ»ΡΠ±ΠΈΠ²ΠΎΠ³ΠΎ (2,13 % ΡΠ° 6,44 % Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎ). ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ₯ ΡΠ° Π’Π¨Π₯ ΡΠ»ΡΡ
ΠΎΠΌ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ Π· Π΄ΠΎΡΡΠΎΠ²ΡΡΠ½ΠΈΠΌΠΈ Π·ΡΠ°Π·ΠΊΠ°ΠΌΠΈ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½ΠΎ ΡΠΊΠ»Π°Π΄ ΠΌΠΎΠ½ΠΎ-ΡΡΠΊΡΡΠ². Π£ Π³ΡΠ΄ΡΠΎΠ»ΡΠ·Π°ΡΠ°Ρ
ΠΠ ΠΠ‘ ΡΡΠ°Π²ΠΈ Π²ΠΈΠ΄ΡΠ² ΡΠΎΠ΄Ρ ΠΡΠΈΠ²ΠΎΡΠΎΡΠ΅Π½Ρ ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΠΎΠ²Π°Π½ΠΎ Π³Π»ΡΠΊΠΎΠ·Ρ ΡΠ° Π°ΡΠ°Π±ΡΠ½ΠΎΠ·Ρ. ΠΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΈΠΉ ΡΠΊΠ»Π°Π΄ ΠΠ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΎΡ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ Π³Π»ΡΠΊΠΎΠ·ΠΎΡ, Π°ΡΠ°Π±ΡΠ½ΠΎΠ·ΠΎΡ ΡΠ° Π³Π°Π»Π°ΠΊΡΠΎΠ·ΠΎΡ. Π£ Π³ΡΠ΄ΡΠΎΠ»ΡΠ·Π°ΡΠ°Ρ
ΡΡΠ°ΠΊΡΡΡ ΠΠ¦ Π Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ Π³Π»ΡΠΊΠΎΠ·Ρ, Π³Π°Π»Π°ΠΊΡΠΎΠ·Ρ, ΠΊΡΠΈΠ»ΠΎΠ·Ρ; Ρ ΡΡΠ°ΠΊΡΡΡ ΠΠ¦ Π β Π³Π»ΡΠΊΠΎΠ·Ρ, Π³Π°Π»Π°ΠΊΡΠΎΠ·Ρ, Π°ΡΠ°Π±ΡΠ½ΠΎΠ·Ρ, ΠΊΡΠΈΠ»ΠΎΠ·Ρ, ΡΠ°ΠΌΠ½ΠΎΠ·Ρ, Π³Π»ΡΠΊΡΡΠΎΠ½ΠΎΠ²Ρ ΡΠ° Π³Π°Π»Π°ΠΊΡΡΡΠΎΠ½ΠΎΠ²Ρ ΠΊΠΈΡΠ»ΠΎΡΠΈ.
ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. Π£ΠΏΠ΅ΡΡΠ΅ Π²ΠΈΠ΄ΡΠ»Π΅Π½ΠΎ ΠΏΠΎΠ»ΡΡΠ°Ρ
Π°ΡΠΈΠ΄Π½Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈ Π· 6 Π²ΠΈΠ΄ΡΠ² ΡΠΎΠ΄Ρ ΠΡΠΈΠ²ΠΎΡΠΎΡΠ΅Π½Ρ, Π·Π°Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ
Ρ ΡΡΠ·Π½ΠΈΡ
ΡΠ΅Π³ΡΠΎΠ½Π°Ρ
ΠΠ²Π°Π½ΠΎ-Π€ΡΠ°Π½ΠΊΡΠ²ΡΡΠΊΠΎΡ ΠΎΠ±Π»Π°ΡΡΡ. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ₯ ΡΠ° Π’Π¨Π₯ ΡΠ»ΡΡ
ΠΎΠΌ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ Π· Π΄ΠΎΡΡΠΎΠ²ΡΡΠ½ΠΈΠΌΠΈ Π·ΡΠ°Π·ΠΊΠ°ΠΌΠΈ ΠΌΠΎΠ½ΠΎΡΠ°Ρ
Π°ΡΠΈΠ΄ΡΠ² Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΈΡ
Π³ΡΠ΄ΡΠΎΠ»ΡΠ·Π°ΡΠ°Ρ
ΡΡΠ°ΠΊΡΡΠΉ ΠΠ ΠΠ‘, ΠΠ ΡΠ° ΠΠ¦ Π Ρ ΠΠ¦ Π ΡΡΠ°Π²ΠΈ Π²ΠΈΠ΄ΡΠ² ΡΠΎΠ΄Ρ ΠΡΠΈΠ²ΠΎΡΠΎΡΠ΅Π½Ρ, ΡΠΊΡ Π·ΡΠΎΡΡΠ°ΡΡΡ Π½Π° ΡΠ΅ΡΠΈΡΠΎΡΡΡ ΠΡΠΈΠΊΠ°ΡΠΏΠ°ΡΡΡ, Π²ΠΈΠ·Π½Π°ΡΠ΅Π½ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΈΠΉ ΡΠΊΠ»Π°Π΄ ΡΡΠΊΡΡΠ². ΠΡΡΠΈΠΌΠ°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΌΠ°ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ½Π΅ Π·Π½Π°ΡΠ΅Π½Π½Ρ Π΄Π»Ρ ΠΏΠΎΠ΄Π°Π»ΡΡΠΎΠ³ΠΎ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΎΡ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΈ ΡΠ° ΠΌΠΎΠΆΡΡΡ Π±ΡΡΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ Π΄Π»Ρ ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΊΠΎΡΡΡ Π½Π° Π»ΡΠΊΠ°ΡΡΡΠΊΡ ΡΠΎΡΠ»ΠΈΠ½Π½Ρ ΡΠΈΡΠΎΠ²ΠΈΠ½Ρ ΠΉ ΠΎΡΡΠΈΠΌΠ°Π½Ρ Π· Π½Π΅Ρ ΡΡΠ±ΡΡΠ°Π½ΡΡΡ
IβII Loop Structural Determinants in the Gating and Surface Expression of Low Voltage-Activated Calcium Channels
The intracellular loops that interlink the four transmembrane domains of Ca2+- and Na+-channels (Cav, Nav) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (IβII loop) in high voltage-activated (HVA) Ca2+ channels possesses the binding site for CavΞ² subunits and plays significant roles in channel function, including trafficking the Ξ±1 subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the IβII loop of Cav1/Cav2 HVA channels and Cav3 LVA/T-type channels, evidence for a regulatory role of the IβII loop in T-channel function has recently emerged for Cav3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Cav3 channels, we have performed a structure-function analysis of the IβII loop in Cav3.1 and Cav3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Cav3.1 and Cav3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Cav3 channels. In contrast to findings in Cav3.2, deletion of the central region of the IβII loop in Cav3.1 and Cav3.3 yielded a modest increase (+30%) and a reduction (β30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Cav3 function by highlighting the unique role played by the intracellular IβII loop in Cav3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Cav3.3
FoxO and Stress Responses in the Cnidarian Hydra vulgaris
Background: In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings: We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions: These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians an
Primary biliary cirrhosis
Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9β10:1) with a prevalence of up to 1 in 1,000 women over 40Β years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13β15Β mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC
- β¦