43 research outputs found

    Reducing Glycosphingolipid Content in Adipose Tissue of Obese Mice Restores Insulin Sensitivity, Adipogenesis and Reduces Inflammation

    Get PDF
    Adipose tissue is a critical mediator in obesity-induced insulin resistance. Previously we have demonstrated that pharmacological lowering of glycosphingolipids and subsequently GM3 by using the iminosugar AMP-DNM, strikingly improves glycemic control. Here we studied the effects of AMP-DNM on adipose tissue function and inflammation in detail to provide an explanation for the observed improved glucose homeostasis. Leptin-deficient obese (LepOb) mice were fed AMP-DNM and its effects on insulin signalling, adipogenesis and inflammation were monitored in fat tissue. We show that reduction of glycosphingolipid biosynthesis in adipose tissue of LepOb mice restores insulin signalling in isolated ex vivo insulin-stimulated adipocytes. We observed improved adipogenesis as the number of larger adipocytes was reduced and expression of genes like peroxisome proliferator-activated receptor (PPAR) Îł, insulin responsive glucose transporter (GLUT)-4 and adipsin increased. In addition, we found that adiponectin gene expression and protein were increased by AMP-DNM. As a consequence of this improved function of fat tissue we observed less inflammation, which was characterized by reduced numbers of adipose tissue macrophages (crown-like structures) and reduced levels of the macrophage chemo attractants monocyte-chemoattractant protein-1 (Mcp-1/Ccl2) and osteopontin (OPN). In conclusion, pharmacological lowering of glycosphingolipids by inhibition of glucosylceramide biosynthesis improves adipocyte function and as a consequence reduces inflammation in adipose tissue of obese animals

    Autophagy: Regulation and role in disease

    Full text link

    Amino acid signalling and the integration of metabolism

    No full text
    It has become clear in recent years that amino acids are not only important as substrates for various metabolic pathways but that they can also activate a nutrient-sensitive, mTOR-mediated, signalling pathway in synergy with insulin. Leucine is the most effective amino acid in this regard. The signalling pathway is antagonised by AMP-activated protein kinase. Amino acid signalling stimulates protein synthesis and inhibits (autophagic) proteolysis. In addition, many amino acids cause an increase in cell volume. Cell swelling per se stimulates synthesis of protein, glycogen, and lipid, in part by further stimulating signalling and in part by unrelated mechanisms. Amino acids also stimulate signalling in beta-cells and stimulate beta-cell growth and proliferation. This results in increased production of insulin, which enhances the anabolic (and anti-catabolic) properties of amino acids. Finally, amino acid-dependent signalling controls the production of leptin by adipocytes, and thus contributes to the regulation of appetite. (C) 2003 Elsevier Inc. All rights reserve

    AMP-activated protein kinase and the regulation of autophagic proteolysis.

    No full text
    Interruption of mTOR-dependent signaling by rapamycin is known to stimulate autophagy, both in mammalian cells and in yeast. Because activation of AMPK also inhibits mTOR-dependent signaling one would expect stimulation of autophagy by AMPK activation. According to the literature, this is true for yeast but, unexpectedly, not for mammalian cells on the basis of the use of AICAR, a pharmacological activator of AMPK. In the present study, carried out with hepatocytes, HT-29 cells, and HeLa cells, we have reexamined the possible role of AMPK in the control of mammalian autophagy. Inhibition of AMPK activity by compound C or by transfection with a dominant negative form of AMPK almost completely inhibited autophagy. These results suggest that the inhibition of autophagy by AICAR is not related to its ability to activate AMPK. We conclude that in mammalian cells, as in yeast, AMPK is required for autophagy

    Amino-acid-dependent signal transduction.

    No full text
    Recent research carried out in several laboratories has indicated that, in addition to their role as intermediates in many metabolic pathways, amino acids can interact with insulin-dependent signal transduction. In this short review, the current state of this rapidly expanding field is discussed

    The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway

    No full text
    The tumor suppressor PTEN is a dual protein and phosphoinositide phosphatase that negatively controls the phosphatidylinositol (PI) 3-kinase/protein kinase B (Akt/PKB) signaling pathway. Interleukin-13 via the activation of the class I PI 3-kinase has been shown to inhibit the macroautophagic pathway in the human colon cancer HT-29 cells. Here we demonstrate that the wild-type PTEN is expressed in this cell line. Its overexpression directed by an inducible promoter counteracts the interleukin-13 down-regulation of macroautophagy. This effect was dependent upon the phosphoinositide phosphatase activity of PTEN as determined by using the mutant G129E, which has only protein phosphatase activity. The role of Akt/PKB in the signaling control of interleukin-13-dependent macroautophagy was investigated by expressing a constitutively active form of the kinase ((Myr)PKB). Under these conditions a dramatic inhibition of macroautophagy was observed. By contrast a high rate of autophagy was observed in cells expressing a dominant negative form of PKB. These data demonstrate that the signaling control of macroautophagy overlaps with the well known PI 3-kinase/PKB survival pathway and that the loss of PTEN function in cancer cells inhibits a major catabolic pathwa

    Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis

    Get PDF
    Protein synthesis, in particular peptide-chain elongation, consumes cellular energy. Anoxia activates AMP-activated protein kinase (AMPK, see [1]), resulting in the inhibition of biosynthetic pathways to conserve ATP. In anoxic rat hepatocytes or in hepatocytes treated with 5-aminoimidazole-4-carboxamide (AICA) riboside, AMPK was activated and protein synthesis was inhibited. The inhibition of protein synthesis could not be explained by changes in the phosphorylation states of initiation factor 4E binding protein-1 (4E-BP1) or eukaryotic initiation factor 2? (eIF2?). However, the phosphorylation state of eukaryotic elongation factor 2 (eEF2) was increased in anoxic and AICA riboside-treated hepatocytes and in AICA riboside-treated CHO-K1 cells, and eEF2 phosphorylation is known to inhibit its activity. Incubation of CHO-K1 cells with increasing concentrations of 2-deoxyglucose suggested that the mammalian target of the rapamycin (mTOR) signaling pathway did not play a major role in controlling the level of eEF2 phosphorylation in response to mild ATP depletion. In HEK293 cells, transfection of a dominant-negative AMPK construct abolished the oligomycin-induced inhibition of protein synthesis and eEF2 phosphorylation. Lastly, eEF2 kinase, the kinase that phosphorylates eEF2, was activated in anoxic or AICA riboside-treated hepatocytes. Therefore, the activation of eEF2 kinase by AMPK, resulting in the phosphorylation and inactivation of eEF2, provides a novel mechanism for the inhibition of protein synthesis
    corecore