28 research outputs found

    Ion Acceleration Efficiency at the Earth's Bow Shock : Observations and Simulation Results

    Get PDF
    Collisionless shocks are some of the most efficient particle accelerators in heliospheric and astrophysical plasmas. Here we study and quantify ion acceleration at Earth's bow shock with observations from NASA's Magnetospheric Multiscale (MMS) satellites and in a global hybrid-Vlasov simulation. From the MMS observations, we find that quasiparallel shocks are more efficient at accelerating ions. There, up to 15% of the available energy goes into accelerating ions above 10 times their initial energy. Above a shock-normal angle of similar to 50 degrees, essentially no energetic ions are observed downstream of the shock. We find that ion acceleration efficiency is significantly lower when the shock has a low Mach number (M ( A ) < 6) while there is little Mach number dependence for higher values. We also find that ion acceleration is lower on the flanks of the bow shock than at the subsolar point regardless of the Mach number. The observations show that a higher connection time of an upstream field line leads to somewhat higher acceleration efficiency. To complement the observations, we perform a global hybrid-Vlasov simulation with realistic solar-wind parameters with the shape and size of the bow shock. We find that the ion acceleration efficiency in the simulation shows good quantitative agreement with the MMS observations. With the combined approach of direct spacecraft observations, we quantify ion acceleration in a wide range of shock angles and Mach numbers.Peer reviewe

    Transmission of foreshock waves through Earth’s bow shock

    Get PDF
    The Earth's magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock. These waves are also observed inside the magnetosphere and down to the Earth's surface, but how they are transmitted through the bow shock remains unknown. By combining state-of-the-art global numerical simulations and spacecraft observations, we demonstrate that the interaction of foreshock waves with the shock generates earthward-propagating, fast-mode waves, which reach the magnetosphere. These findings give crucial insight into the interaction of waves with collisionless shocks in general and their impact on the downstream medium.Peer reviewe

    Repercussion of megakaryocyte-specific Gata1 Loss on megakaryopoiesis and the hematopoietic precursor compartment

    Get PDF
    During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cK-OMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. © 2016 Meinders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Structure of the gene for human uroporphyrinogen decarboxylase.

    No full text
    Uroporphyrinogen decarboxylase, the fifth enzyme of the heme biosynthetic pathway, is an housekeeping enzyme whose activity is enhanced during erythropoietic differentiation. We have previously shown that this increased activity was in part accounted for by an enhanced transcription of the gene in erythropoietic tissues. To elucidate further the tissue specific regulation of an housekeeping gene we have isolated the human URO-D gene and determined its organization. The cloned gene comprises 10 exons spread over 3 Kb. Two transcriptional start sites were determined and analysis of 900 bp of the 5' flanking region suggests a very simple structural organization for the URO-D gene promoter. We also show that this gene is functional when transfected into mouse fibroblasts, and that its promoter is sensitive to a viral enhancer

    Molecular cloning and complete primary sequence of human erythrocyte porphobilinogen deaminase.

    No full text
    We have cloned and sequenced a cDNA clone coding for human erythrocyte porphobilinogen deaminase. It encompasses the translated region, part of the 5' and the 3' untranslated regions. The deduced 344 amino acid sequence is consistent with the molecular weight and the partial amino-acid sequence of the NH2 terminal of the purified erythrocyte enzyme. Southern analysis of human genomic DNA shows that its gene is present as a single copy in the human genome and Northern analysis demonstrates the presence of a single size species of mRNA in erythroid and non-erythroid tissues and in several cultured cell lines. Quantitative determinations indicate that the amount of PBG-D mRNA is modulated both by the erythroid nature of the tissue and by cell proliferation, probably at the transcriptional level
    corecore