121 research outputs found

    Genome-wide identification, characterization and expression profiling of the ubiquitin-proteasome genes in biomphalaria glabrata

    Get PDF
    Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. The aims of this work were to identify and characterize the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterized these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organized distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analyzed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis114CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ479890/2013-

    Elephant grass silage inoculated with cellulolytic fungi isolated from rumen

    Get PDF
    ABSTRACT The objective was to evaluate the inoculation with Aspergillus terreus and/or Trichoderma longibrachiatum on fermentation, chemical and microbiological composition of elephant grass ‘Cameroon’ silage (Cenchrus purpureus). Treatments were A. terreus at 105 colony forming units (CFU)/g (AT15), T. longibrachiatum at 105 CFU/g (TL20), a mixture of both at 105 CFU/g (MIX), and a control group without inoculation (CONTR). The design was completely randomized with seven replicates. The MIX silage was most stable, while CONTR, AT15, and TL20, had lower dry matter losses. There was no effect of inoculation in the chemical composition of silages. Only MIX silage (4.40) had pH above the minimum of 4.2 for humid grass silage and above the control (4.05). Bacteria from Diplococcus genus was identified at the opening of TL20 and CONTR silages. After air exposure, the population of rods, Lactobacillus, and total lactic acid bacteria was higher in theTL20 and MIX. The inclusion of a T. longibrachiatum and A. terreus mixture increases dry mater loss and silage pH. T. longibrachiatum was more efficient in maintaining populations of total lactic acid bacteria after opening; therefore, this strain has potential as an additive for elephant grass ‘Cameroon’ silage

    Multiscale characterization of an extensive stromatolites field: a new correlation horizon for the Crato Member, Araripe Basin, Brazil

    Get PDF
    There is wide recognition of lacustrine sediments as excellent archives of a basin’s depositional history due to their high sensitivity to environmental changes. Among them, microbial limestones are one of the most valuable tools for paleoenvironmental reconstruction, because the biological agents responsible for their genesis tend to respond to short-lived variations of the depositional setting creating specific precipitation patterns. We here document and investigate the sedimentary features of a specific sedimentary layer, remarkable by the extraordinary lateral continuity of its textural attributes over kilometer distances. This marker horizon occurs among the first carbonate layers of the Crato Member (Aptian, Araripe Basin, NE Brazil), commonly assigned a paleolacustrine system. We build on a multiscale comparative analysis (mesoscale, microscale, and chemical) to outline the main processes and paleoenvironmental settings that prompted this interval’s widespread and laterally nearly uniform deposition. A lamination pattern identified in different well cores was scrutinized and compared, and shows striking lateral continuity attesting to autochthonous biologically induced mineralization as the primary mechanism of the formation of the microbialites. Compositional and stable-isotope results also show similar trends throughout the well cores, where minor differences represent the influence of local processes. The studied interval encompasses the relatively swift transition of organic shales rich in ostracod valves to planar stromatolites, where both developed in the anoxic benthonic zone of a freshwater lake. The precipitation of the overlying thinly laminated limestones is related to a change in the carbonate genetic mechanism as a response to a more stable lacustrine stratification. The widespread formation of microbialites preserving an almost identical textural pattern must be related to a regional event, constituting a rare example of a preserved ancient biostrome. Moreover, the investigation of this sedimentary layer can further contribute to determining the roles of different biotic and abiotic processes in microbialite precipitation over large areas
    corecore