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ABSTRACT: There is wide recognition of lacustrine sediments as excellent archives of a basin’s depositional history
due to their high sensitivity to environmental changes. Among them, microbial limestones are one of the most
valuable tools for paleoenvironmental reconstruction, because the biological agents responsible for their genesis
tend to respond to short-lived variations of the depositional setting creating specific precipitation patterns. We
here document and investigate the sedimentary features of a specific sedimentary layer, remarkable by the
extraordinary lateral continuity of its textural attributes over kilometer distances. This marker horizon occurs
among the first carbonate layers of the Crato Member (Aptian, Araripe Basin, NE Brazil), commonly assigned a
paleolacustrine system. We build on a multiscale comparative analysis (mesoscale, microscale, and chemical) to
outline the main processes and paleoenvironmental settings that prompted this interval’s widespread and
laterally nearly uniform deposition. A lamination pattern identified in different well cores was scrutinized and
compared, and shows striking lateral continuity attesting to autochthonous biologically induced mineralization
as the primary mechanism of the formation of the microbialites. Compositional and stable-isotope results also
show similar trends throughout the well cores, where minor differences represent the influence of local
processes.

The studied interval encompasses the relatively swift transition of organic shales rich in ostracod valves to planar
stromatolites, where both developed in the anoxic benthonic zone of a freshwater lake. The precipitation of the overlying
thinly laminated limestones is related to a change in the carbonate genetic mechanism as a response to a more stable
lacustrine stratification. The widespread formation of microbialites preserving an almost identical textural pattern must
be related to a regional event, constituting a rare example of a preserved ancient biostrome. Moreover, the investigation
of this sedimentary layer can further contribute to determining the roles of different biotic and abiotic processes in
microbialite precipitation over large areas.

INTRODUCTION

Lacustrine sediments can be high-resolution archives of the environmental

history of a basin, including its physical, biological, and chemical changes

(Kelts and Talbot 1990). These deposits commonly preserve original sedi-

mentary textures and isotopic records, often allowing precise recons-

tructions of the environmental settings (e.g., Kelts and Talbot 1990;

Lamb et al. 2007; Doebbert et al. 2014; Baddouh et al. 2017; Letterón
et al. 2017). Even though many lakes precipitate carbonates at some

point in their depositional history, distinct carbonate facies can express

subtle changes in dynamic environmental settings. Organomineralization

(Trichet and Défarge 1995) has also been cited as having a significant

role in the precipitation of carbonates in lacustrine settings, especially

in the nearshore zones, by the interactions of microbial metabolism and

environmental conditions, eventually leading to the formation of microbialites

(Platt and Wright 1991; Arp et al. 2003; Dupraz et al. 2004; Glunk et al.

2011; De Mott et al. 2020).

Because the genesis of microbialites is directly related to environmental

settings, they can be valuable tools for paleolimnological reconstructions (e.g.,

Hillaire-Marcel and Casanova 1987; Talbot 1990; Casanova and Hillaire-

Marcel 1993; Arenas et al. 1997; Cohen et al. 1997; Martin-Bello et al. 2019),

recording in distinct scales of observation, lake-level fluctuations, paleo-

hydrology, and water chemistry changes. However, although the generating

processes of microbialites are exhaustively investigated (see Riding 2000;

Dupraz et al. 2009), studies regarding sub-meter-scale correlations on ancient

microbialites in marine or nonmarine environments are relatively scarce (e.g.,

Ibarra and Corsetti 2016; Bunevich et al. 2017; Martin-Bello et al. 2019).

Moreover, the formation of microbialite fields where their textural attributes are
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directly correlatable seems to be an unusual event, with very few documented

occurrences throughout geologic history (e.g., Choudhuri et al. 2016; Ibarra

and Corsetti 2016).

The Aptian Crato Member (Santana Formation) of the Araripe Basin is

considered an excellent example of a mixed siliciclastic–carbonate paleolake,

known chiefly for its outcrops of fine-grained laminated limestones bearing

well-preserved fossiliferous content, which has received considerable attention

over the last few decades (e.g., Grimaldi 1990; Carvalho and Viana 1993;

Mohr and Eklund 2003; Makarkin and Menon 2005; Martill et al. 2007a;

Báez et al. 2009; Figueiredo and Kellner 2009; Carvalho et al. 2019; Varejão
et al. 2019; Ribeiro et al. 2021), being recognized as a Konservat-Lagerstätte.
However, the main characteristics of the depositional environment of this

lithostratigraphic unit are still a matter of debate. Multiple sedimentary models

have been proposed based on studies which suggest different degrees of

salinity of the lake waters (Mabesoone and Tinoco 1973; Neumann 1999;

Martill et al. 2007b; Varejão et al. 2019), where a connection with seawater at

some stage is proposed (Santos 1982; Arai 1999; Martill 2007; Varejão et al.

2021; Ribeiro et al. 2021). More recently, debates concerning the influence of

microbial mediation on the precipitation of the Crato Member limestones have

also flourished (Heimhofer et al. 2010; Catto et al. 2016; Warren et al. 2017).

The present study documents a specific laminae succession, initially

distinguished by its remarkable textural similarity in far-distant sites of the

Araripe Basin. Detailed multiscale characterization and geochemical analysis

were employed to investigate the processes and the paleoenvironmental

conditions that triggered its widespread and laterally highly uniform

deposition. Our results provide new insights into how regional and local

sedimentary controls affected the precipitation of this extensive microbialite

field, helping to elucidate the development of this kind of feature over large

areas in a relatively short period. Additionally, due to the recognition of the

deposition of this stratum as a response to a unique and basin-wide geologic

event, we here assign the studied interval as a new marker horizon of the

Araripe Basin.

GEOLOGICAL SETTING

Structural Framework

The Araripe Basin covers an area of nearly 9000 km2, and is the largest

with the best preserved stratigraphic record of all the interior basins of

northeastern Brazil (Fig. 1). Its genesis is related to the rupture of the

Gondwana paleocontinent and the opening of the South Atlantic Ocean, a

process initiated in the Barremian with lithospheric stretching, which

reached its climax during the Aptian (Matos 1992, 2000). At least in its

initial formation stages, the Araripe Basin can be classified as a pull-apart

basin with a complex structural framework (Silva 1983, Miranda et al.

2014). It is located in the Transversal Zone of the Borborema Province

and is bounded by the Patos and Pernambuco shear zones, with an E–W

trend. Also, many NE–SW-trending faults inherited from Borborema

Province Proterozoic structures affect the basin (Brito-Neves 1990; Ponte

and Ponte Filho 1996), contributing to an architecture based on half-

grabens and horsts observed by Ponte and Ponte Filho (1996) and later

verified by aeromagnetic surveillance (Camacho and Sousa 2017; Araújo
et al. 2019).

Stratigraphy and Marker Horizons of the Araripe Basin

Four sequences constitute the stratigraphic record of the Araripe Basin

(Assine 2007). The lowermost stratigraphic sequence was deposited in the

Paleozoic (Devonian–Silurian) and is composed of the fluvial sandstones

of the Mauriti Formation. The Jurassic lacustrine and fluvial deposits of

the Brejo Santo and Missão Velha Formations overlie the Paleozoic

sediments and compose the pre-rift sequence. The presence of a new

unconformity (based on ostracod content) marks the deposition of the rift

supersequence, which consists in fluvial to lacustrine strata of the Abaiara

Formation and was deposited during Berriasian and Hauterivian ages. Two

sequences compose the basin’s post-rift phase sedimentary stacking. The

post-rift I sequence, which is of Aptian age and caps the underlying sequence

in angular unconformity, is formed by the fluvial to lacustrine Rio da

Batateira Formation (sensu Ponte and Appi 1990) and the more complex

Santana Formation, described in the following paragraph. Capping the

basin sedimentary infill, the post-rift II sequence is represented by

Araripina (sensu Assine 2007) and Exu formations, with deposition

attributed to the Albian and Albian–Cenomanian ages, respectively. This

fossiliferous-content dating, however, is still controversial (Regali 2001;

Martill et al. 2021).

The Santana Formation (Beurlen 1962) has the most varied lithostratigraphic

record of the Araripe Basin, reflecting the evolution of distinct depositional

environments: from freshwater to a brackish lacustrine system, represented by

the Crato Member, composed mainly of the interdigitation of lutites, laminated

limestones, and sandstones (Neumann 1999; Heimhofer et al. 2010); following

was the onset of a sabkha lake, with precipitation of gypsum and anhydrite

layers that chiefly constitutes the Ipubi Member (Silva 1988; Bobco et al. 2017;

Duarte and Borghi 2018); next, a shallow marine system with two transgressive

to regressive cycles covered the basin, represented by the Romualdo Member,

which is composed of marls, shales, sandstones, and coquina beds (Mabesoone

and Tinoco 1973; Custódio et al. 2017; Kroth et al. 2021).
Stratigraphic horizons, eventually formalized as lithostratigraphic units,

have more than once been recognized in the Aptian sedimentary record of

the Araripe Basin. Being an easily discernible shale to nodular limestones

layer among the sandstones of the Rio da Batateira Formation, the Fundão
Member (Hashimoto et al. 1987; Rios-Netto et al. 2012) is the first

horizon documented and marks the onset of an extensive lacustrine system

in the basin (Chagas et al. 2007; Rios-Netto et al. 2012; Fambrini et al.

2016). Recently, Varejão et al. (2020) proposed a new unit in the Crato

Member based on lithologic and paleontologic similarities seen in four

kilometrically distant sites in the east of the Araripe Basin. The so-called

Caldas Bed is positioned right above the first package of laminated

limestones of the Crato Member, related to a transition from a hypersaline

lake to a freshwater system (Varejão et al. 2020, 2021).

MATERIAL AND METHODS

The initial recognition of the studied interval was possible through the

analysis of photographic archives and rock descriptions of well cores

(1PS-09-CE and 1PS-11-CE, from now on called “PS9” and “PS11,”
respectively) drilled by CPRM (Geological Survey of Brazil: Santana

Project II; Scheid et al. 1978). The identification of a distinct and

correlatable lamination pattern among the first-deposited limestones of the

Crato Member was possible based on this material. This specific structure

is also observed in the outcrops of the Batateira Creek, positioned around

the same stratigraphic level (topographic level of 550–600 m; see Fig. 1).

Seeking to recover a weathering-unscathed sample of this rock stratum, a

short (2.07 m) well core was obtained directly from a limestones outcrop

in the Cascata region, on the outskirts of the Crato municipality (Fig. 2).

This new core (2-CH-1-CE, here referred to as the “CH core”) is

equivalent to the 86.6–88.9 m range of the Rio da Batateira section

represented in Figure 3.

A new well core (2-AB-1-CE, here referred to as the “AB core”) was
acquired in the Serra da Mãozinha region, a local inselberg. The AB well

core recovered over 420 m of continuous record and comprises all the

documented lithostratigraphic units of the post-rift sequences. The target

layer occurs in this well core between depths 201.5 and 202 m.

The sedimentary attributes of the Crato Member were described in a high-

resolution scale (1:40) considering attributes like grain size, sedimentary

structures, fossil content, and rock color (based on Munsell Color (Firm)
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2009) in those four locations as mentioned earlier, all in the eastern region of

the Araripe Basin.

Twenty-two samples were collected in the AB and CH cores for

petrographic investigation of the interval encompassing the transition between

organic shales, nodular limestones, and thinly laminated limestones. Also, a

thin section located in the aimed interval (136.30 m) of PS11 core was

recovered from the lithologic archive of the Sedimentary Geology Laboratory,

Federal University of Rio de Janeiro (LAGESED-UFRJ). The thin sections

were prepared and impregnated with blue epoxy resin. All the samples were

described and photographed using a Zeiss Imager A1 microscope.

Semiquantitative estimation of the composition of the studied interval was

possible using an XRF handheld analyzer (Delta Premium analyzer from

Olympus Innov-X). Portable XRF devices provide fast, nondestructive, and

reliable means to measure the relative variations of major elements in

carbonate rocks, as long as the necessary calibrations are taken (Sinneasel

et al. 2018). Also, since the studied samples come from well cores, the

possible effects of weathering on the composition of these deposits can be

ignored (Quye-Sawyer et al. 2015).

The instrument uses energy-dispersive X-ray fluorescence technology

and is equipped with a Rh anode (maximum parameters: 50 kV, 100 A, 4

W) and a 10 mm2 X-Flash® Silicon Drift Detector (SDD). The limits of

detection (in ppm) for the analyzed elements are: Ca (15), Si (200), S (45),

Fe (5), Mn (5), Sr (1), Al (350), P (40), K (20), and Pb (2) (Olympus

VANTA). The limits of detection represent the calculated value using a

three-sigma 99.7% confidence level. The average standard error found for

the elements is , 0.01 for S, K, P, and Sr and , 0.06 for Si, Ca, Mg, and

Fe. We obtained seventy readings from the CH core and 51 from the AB

core, with a maximum distance of 3 cm from each other and 120 s reading

FIG. 2.—Overview of Batateira Creek at the

laminated limestone outcrops at the Cascata

location, with “X” marking the exact spot where

the CH core was drilled.
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time for each target spot. Data management, analysis, and representation

were performed using Pandas and Matplotlib libraries for Python 3.7

(Hunter 2007; The Pandas Development Team 2020).

Eight carbonate powder samples from each AB and CH cores were

sent to the LES laboratory of the University of São Paulo (USP) for

carbon and oxygen stable isotopes analysis. A DELTAVAdvantage mass

spectrometer (equipped with a Gas Bench II Thermo) was calibrated

using the NBS18 and NBS19 standards. Results on carbon and oxygen

stable isotopes are expressed by a conventional notation relative to the

Vienna Pee-Dee Belemnite (VPDB) standard, with a precision of 0.05%
for d13C and 0.07% for d18O. In addition, previously published carbon

and oxygen isotopic data were compiled (data from Neumann 1999 and

Rodrigues 2015) from samples collected at the same studied interval in

the PS11 core for comparison purposes.

RESULTS

Mesoscale and Microscale Characterization

Three distinct lithotypes compose the studied interval, where the ~ 0.4 m-

length nodular limestone is the most easily recognizable. These nodular

limestones directly overlie a thinner (~ 0.1 m) layer of organic shales (Fig. 4)

and are overlain by a thicker (about 3 m in the AB core) layer of thinly

laminated limestones. Description and comparison of the defined basal

boundary (P0) and nine overlying laminasets (A to I; sensu Campbell 1967)

of the AB and CH cores and photographic records of the PS09 and PS11

cores (in Scheid et al. 1978) allowed a high-resolution correlation between the

samples (Fig. 4). Figures 5 and 6 contain a visual summary of the overall

characteristics of the studied interval in mesoscale and microscale.

The term “nodular texture” refers to the texture of some carbonates that,

when observed in mesoscale (hand sample), are composed of multiple

rounded to irregularly shaped nodules associated with a wrinkly irregular

lamination, as seen in the laminasets B to F. For these same nodules, in

microscale, we adopt the term “clot,” which gives the “clotted fabric” (see
Riding 2000; also referred to as “structure grumeleuse” by Cayeux 1935),

which is characterized by containing visible microcrystalline peloids,

among other particles, surrounded by microcrystalline calcite. This

nomenclature is here adopted to avoid misunderstandings with the term

“mesoclots,” proposed by Shapiro (2000) and commonly related to

nonlaminated thrombolites.

P0.—A millimetric horizon (here named P0) marks the lower boundary of

the studied interval. It is characterized by what seems, in mesoscale, an

abundance of lamination-oriented, slightly elongated carbonate nodules. A

microscopic investigation reveals that the clots are either irregular or spherical

to ellipsoidal and range in size from 0.2 to 2 mm, with composition given

mainly by microcrystalline calcite but with significant pyritization. It is also

possible to observe spherulitic calcite aggregates inside some clots. Besides,

these clots can coalesce to the point of forming laminae or be isolated from

each other in the dark organic matrix (Fig. 7A).

Laminaset A.—This comprises most of the lithotype here described as

organic shale. It consists of black-to-brown, organic matter-rich matrix and

typically disarticulated, flattened ostracod valves, often concentrated to form

horizontal lenses (Fig. 7B). Ellipsoidal to spherical centimetric to millimetric

nodules also occur less commonly in the interval, with its components

occasionally displaying diagenetic calcite with spherulitic extinction (Fig. 7C).

The laminaset gets darker towards its base, finally reaching P0.

Laminaset B.—Intercalation of relatively thick light calcitic (about 2 to

4 mm) and dark organic laminae (about 1 to 2 mm) in a wrinkly pattern is

the main attribute of Laminaset B. The ubiquitous dark laminae of the

studied interval are of organic origin (bacterial strands) as evidenced in

Figure 8A and B. Clotted fabric defines the calcitic laminae (Fig. 7D),

where it is possible to discriminate distinct components inside the clots

like peloids and calcitic spheroids (Fig. 8C, D). Also notable is a sinuous

arrangement inside some intraclasts, with a possible origin related to

cementation adjacent to bacterial filaments. Often, millimetric, irregularly

shaped intraclasts composed uniquely of spherulitic calcite appear in this

laminaset, usually associated with the dark organic laminae. These organic

laminae also contain disarticulated ostracod valves, like those seen in

Laminaset A. Centimetric spherical intraclasts occasionally enclose phosphatic

organic remains (probably fish bones) and are likely to be more likely to appear

in this laminaset (Fig. 7E). Features related to dissolution, cementation, and

replacement by chalcedony, microcrystalline silica, and macrocrystalline calcite

are apparent in this laminaset in both teh CH and AB cores, where either the

calcitic laminae and the interior of the articulated ostracod valves are affected.

Additionally, it is often possible to find centimetric carbonized plant remains in

this laminaset.

Two laminae composed of peloids and ostracod valves separated by

centimeters from each other are a key marker at the base of Laminaset B,

clearly visible in both the CH and AB cores (Fig. 7F).

Laminaset C.—The nodular limestones of Laminaset C are distinguishable

in mesoscale by abrupt dark organic laminae thinning when compared with

the adjacent laminasets, with also clot-coalesced laminae where cementation

and/or replacement is often observable. The features related to dissolution,

cementation, and replacement by chalcedony, microcrystalline silica, and

macrocrystalline calcite observed in Laminaset B are also present in this

laminaset (Fig. 7G, H).

Laminaset D.—Intercalation of nodular and thinly laminated fabrics,

outlined by dark organic laminae with variable thickness, are the most

prominent features of Laminaset D in mesoscale. The thin carbonate

laminae are, in fact, continuous and represent sub-sets marked by clot-

coalesced fabrics, with recurrent-thickness laminae (about 1 mm) (Fig.

9A). Well-defined, individualized clots occur at the bottom and top of this

laminaset. Clots composed entirely of calcite spherulites also appear

associated with the bottom most dark organic laminae near the boundary

with Laminaset C.

Laminaset E.—Laminaset E can be characterized in mesoscale as an

interval of nearly 10 mm consisting of limestones with an almost incipient

lamination. Petrographic analysis reveals that it is composed of thin,

presumably clot-coalesced laminae similar to the ones seen in Laminaset

D, where here they generally have a greater thickness and no defined

pattern (Fig. 9B). Dark organic laminae are indeed very thin and

sometimes discontinuous. Ostracod valves are also relatively abundant in

this laminaset, as they occur predominantly disarticulated. Rare irregular

nodules composed of spherulites may also be present.

Laminaset F.—The main textural feature of Laminaset F is its nodular

fabric, where subtle changes are noticeable. The most recognizable

microscale characteristics of this laminaset are: 1) laminae dominated by

well-defined clots, 2) nearly planar clot-coalesced laminae, and 3) dark

organic laminae with variable thicknesses (Fig. 9C). Inside many clots, a

sinuous arrangement is also observable (Fig. 9D), which is tentatively

related to bacterial filaments (see Discussion). The presence of clots

composed solely of calcitic spheroids, a recurrent feature of the whole

studied interval, is much more common in this laminaset (Fig. 9E).

Bedding-parallel fibrous veins (beef structures), which are commonly

related to fluid overpressure (Cobbold et al. 2013), are often present

towards the top of this laminaset in the AB core (Fig. 9F). This feature is

nearly absent in the CH and PS11 cores, representing post depositional

differences between the rock records. The upper boundary of this

F5-6
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FIG. 4.—Comparison of the studied interval, with its respective depth in different well cores, featuring the laminasets defined here. Photographs of the PS09 and PS11

cores are reproduced from Scheid et al. (1978).
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FIG. 5.—Mesoscale and microscale characterization of the laminasets E to I. Lst, Laminaset. //P, uncrossed polarizers; XP, crossed polarizers.
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FIG. 6.—Mesoscale and microscale characterization of the laminasets P0 to D. (Lst, Laminaset; //P, uncrossed polarizers; XP, crossed polarizers).
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FIG. 7.—Photomicrographs of laminasets (Lst) features. A) P0, contact between the organic shale and calcitic clotted laminae; restricted, yet intense pyritization affects

either calcitic laminae and the spheroidal clot in the center of the image, where spherulites can also be observed (XP). B) Lst A, organic shale with abundant flattened and

disarticulated ostracod valves (//P). C) Lst A, diagenetic nodule inserted in an organic matrix mainly composed of spherulites (XP). D) Lst B, clotted fabric of calcite

laminae (//P). E) Lst B, spheroidal intraclast containing calcitic to phosphatic material possibly related to fish bones (//P). F) Lst B, peloidal calcitic lamina, with sparse

ostracod valves (//P). G) Lst C, peloidal calcitic lamina with local substitution by silica, as indicated by the yellow arrows (XP). H) Lst C, peloidal to microcrystalline–

cryptocrystalline calcitic lamina with pores filled by macrocrystalline calcite indicated by the yellow arrows (//P).
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laminaset also marks the end of deposition of the continuous nodular

limestones.

Laminaset G.—Laminaset G, the first of the thinly laminated

limestones, occurs with an abrupt contact with the underlying laminaset,

often marked by slumps or loop beddings (Bates and Jackson 1980;

Calvo et al. 1998). This laminaset shows considerable thickness

variations between the AB and CH cores (13 and 23 cm, respectively),

with the occasional occurrence of prominent dark organic laminae in the

AB core. Petrographic investigation provides evidence that these thinly

laminated limestones are mudstones with rhythmic alternation with

crystallinity differences and an association with organic matter, evident

by the lighter and darker colors of the laminae. Isolated, nearly

ellipsoidal clots occur sparsely, commonly deforming the lamination.

Thick (1 to 2 mm) isolated dark organic laminae may also appear.

Laminaset H.—The appearance of an aligned-nodules-rich, dark

organic lamina marks the transition between the laminasets G and H (Fig.

9G). Laminaset H is composed mainly of thinly laminated limestones,

with the aforementioned nodular lamina being the first of a triplet. These

three nodule-rich laminae correspond to narrow reappearances of the

clotted fabric characteristics of laminasets C to F (Fig. 5).

Laminaset I.—The most remarkable aspect of the thinly laminated

Laminaset I is the moderate to intense deformation of its laminae by soft-

sediment deformation structures (SSDS), represented by slumps and loop

beddings (Figs. 5, 9H). Also, this mudstone exhibits the same rhythmic

lamination created by differences in crystallinity and the presence of

organic matter described for Laminaset G.

Compositional Analysis

Ten time series were selected based on abundance in the studied cores and

relevance to environmental settings. These pXRF time series include Ca, Si, S,

Fe, Mn, Sr, Al, P, K, and Pb, representing typical lake sediments, where the first

five listed together sum up nearly 98% of total detectable rock composition

along both cores. Also, these elements are useful as proxies for processes that

affect the depositional setting, like detrital input, lake water oxygenation, and

biological production in lakes and other environments (Cohen 2003; Davies

et al. 2015; Herndon et al. 2018). Figure 10 illustrates the variations of element

FIG. 8.—A, C) Transmitted white light and B, D) fluorescence mode images of calcitic clots and dark laminae of Laminaset B. The ubiquitous dark laminae of the

studied interval, like the ones seen in Parts A and C, are of organic origin (bacterial strands), as evidenced in Part B. Also, as further outlined in Parts C and D, peloids

(Pel) and calcitic spheroids (Msph) are common constituents of clots.
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FIG. 9.—Photomicrographs of laminasets (Lst) features. A) Lst D, interface between underlying peloidal laminae and overlying clotted laminae (XP). B) Lst E, nearly

indistinguishable clot-coalesced laminae with sparse disarticulated ostracod valves (XP). C) Lst F, intercalation of well-defined clots associated with dark organic laminae

and clot-coalesced laminae (XP). D) Lst F, observable inferred subvertical filament molds, indicated by yellow arrows, inside a clot (XP). E) Lst F, clot composed mainly

of calcitic spheroids (XP). F) Lst F, macrocrystalline calcite lens following the general orientation of the limestone (XP). G) Lst H, one of the clotted laminae marks the

limit of the laminasets G and H (XP). H) Lst I, soft-sediment deformation in mudstone (//P).
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concentrations (expressed by log curves) and correlation matrices for each

analyzed core.

The first observable aspect of the compositional analysis of the studied

interval is the predictable negative correlation between the Ca and Si logs,

reflecting mainly the lithologic difference between limestones and shales.

Nonetheless, positive peaks of Si in Laminaset B of both cores are also

observable, as a the Ca increase and Si decrease in the transition between

nodular limestones and laminated limestones in the CH core.

Aluminum contents are moderately correlated with Si in both cores,

following a decreasing-upward trend and roughly finding its peaks in the

same heights of the Si log. However, despite showing strong, nearly

identical correlations with Al in both cores, the K contents do not suggest

any correlation with Si. Still, the Al logs also tend to express strong

positive correlations with Fe and S.

The sulfur contents in both cores find their highest values in the organic

shales of Laminaset A, with a more or less evident decreasing trend towards the

top of the studied interval. Fe contents are positively correlatable with S, which

is probably related to the observed widespread pyritization of the original

components throughout the interval. It is also noteworthy that the Fe quantities

in the AB core show much more variation than that seen in the CH core. This

FIG. 10.—Compositional and isotopic variation logs of the AB and CH cores in the study interval, with the respective compositional Pearson correlation matrices.
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phenomenon is also observed in the analysis of Mn quantities of both cores,

although no clear correlation is observable between Fe and Mn in the studied

interval. On the other hand, Mn concentration logs again seem to be in a good

correlation with the Ca variations in the AB core, indicating the presence of this

element in calcites, commonly as a replacement of Ca.

Pb shows moderate to high correlations with Fe and S and is probably

related to the content of this element in pyrite crystals, with a highly

erratic behavior throughout the studied interval in both cores.

It is noticeable that P contents tend to be higher in the bottom organic shales,

with a pronounced decrease throughout the overlying limestones. A strong

correlation (0.87) of this element with Fe is attestable in the AB core. Strontium

finds its highest values, both in AB and CH cores, in the organic shales of

Laminaset A, showing a strong positive correlation with K in the AB core.

Stable-Isotope Analysis

Light values of d13C and d18O are predominant throughout both the AB

and CH cores, with different degrees of variability for each stable-isotope

ratio investigated (Fig. 10).

In both cores, the d13C shows marked variability, with values ranging

between –8.45 and 0.46% in the CH core and between –7.30 and –0.19%
in the AB core. It is also possible to observe a substantial decrease in the

d13C values at the point that would correspond to the lower half of the

nodular-limestone interval (between laminasets B and E), where its

minimum marks are reached. The d13C values increase upwards, reaching

more positive marks at the top of the studied interval within the thinly

laminated limestones (Fig. 10).

The d18O values present less variability, ranging between –6.60 and –3.73%
in the CH core and –6.91 and –4.95% in the AB core. The d18O more positive

values correspond to the samples where the d13C lowest values are observed,

with a slight decrease upward in both cores.

Already published stable-isotope data (from Neumann 1999 and Rodrigues

2015) of five samples collected in the nodular limestones and adjacent thinly

laminated limestones of the PS11 core are constrained in similar ranges, with

d13C values between –7.20 and –0.06% and d18O values between –6.78 and –

5.10%. In this dataset, it is again observable that the d13C values seem related

to the lithotypes, with the highest observed value corresponding to the sample

collected among the thinly laminated limestones. Figure 11 presents a cross

plot including the values of d13C and d18O of all studied cores, where the

relation of lithotype and d13C values are readily observable.

DISCUSSION

Microbial Nature of Nodular Limestones and Diagenetic Alterations

Neumann et al. (2003) suggested a microbially related origin for a part or

all of the Crato Member limestones. More recently, Catto et al. (2016)

reported the existence of several attributes of these rocks that confirm this

hypothesis. Either in thinly laminated or in nodular limestones, remnants of

calcified microstructures, like honeycombs and spheroids, are related to

exopolymeric substances (EPS), coccoidal and filamentous bacteria, indicating

organomineralization (Catto et al. 2016). Also, the contribution of microbial

mats to the preservation of the fossil content has been the focus of many

studies (Barling et al. 2015; 2020; Osés et al. 2016; Varejão et al. 2019; Dias

and Carvalho 2020; Iniesto et al. 2021). However, the spatial distribution of

these rocks, either vertically or horizontally, is somewhat poorly explored

because most of the previous studies are based on samples of few outcrops and

well cores, generally restricted to specific intervals and located primarily in the

restricted quarry areas of the Araripe Basin.

The nodular fabric, present in laminasets B to F, with rhythmic

intercalation of clotted and dark organic (bacterial strands) laminae, is the

most readily recognizable attribute of the studied interval and is a common

feature related to EPS calcification (Riding 2000; Arp et al. 2003; Dupraz

et al. 2004; Riding and Tomás 2006). Based on this textural pattern and

the relative scarcity of allochthonous grains in the calcitic laminae, we

suggest that in situ CaCO3 precipitation is the most likable process for the

formation of the nodular limestones of the study interval.

Calcified remnants of filaments (given by the sinuous and subvertical

arrangements observed in some clots, very much like the ones presented

by Maisano et al. 2020 in modern microbial mats) and calcitic spheroids,

probably related to coccoid cyanobacterial communities such as those

described by Perri and Spadafora (2011), were identified. These features

indicate an early process of mineralization affecting the bacterial bodies

and promoting their fossilization, a process attributed to SRB mediation of

carbonate precipitation (van Lith et al. 2003). Conversely, other original

components of the microbial communities may also be fossilized by the

early calcification process, resulting in different textures. For example, a

very similar relationship exists between the clot-coalesced laminae of

Laminaset E and the mid-water bacterial mats preserved in black shales

described by Oschmann (2000). It is also noteworthy that the occasional

alternation of different types of clotted fabrics (e.g., laminae composed of

well-defined clots vs. nearly planar clot-coalesced laminae of Laminaset F;

see Fig. 9C) may be directly related to the episodic variation of carbonate

precipitation mechanisms (i.e., autochthonous precipitation vs. trapping

and binding) and distinct microbial communities original arrangements,

where cyanobacterial metabolism could also trigger the main budget of

CaCO3 precipitation (Perri et al. 2012; Suarez-Gonzalez et al. 2014).

However, more studies are needed to precisely identify the main bacterial

agents involved in the precipitation of each laminaset.

The diagenetic overprints in the studied interval predominantly suggest

eodiagenetic conditions. In this sense, it is also noteworthy that most

microbial processes related to carbonate lithification are considered part of

the modifications of the “eodiagenetic realm” as the first postdepositional

crystals are forming (Armenteros 2010; De Boever et al. 2017).

Accordingly, the most common features associated with diagenesis in

the studied interval are: 1) calcite lithification and cementation through

biomediated processes (Arp et al. 2003; Dupraz et al. 2004; Armenteros

2010), 2) scattered occurrence of framboidal microcrystalline pyrites,

randomly replacing components in both organic shales and nodular

limestones, associated with reducing conditions and presumably related to

interactions sulfate-reducing bacteria with organic matter (Berner 1985;

Dupraz et al. 2004; Duverger et al. 2020), 3) localized dissolution of peloids

and cementation as macrocrystalline calcite, and 4) sparse silicification of

localized clots (in laminasets B and C), which can be related to silicic acid-

binding on microbial surfaces (Renaut et al. 1998; Bustillo 2010).

FIG. 11.—Plot of d13C and d18O of the study interval in the CH, AB, and PS11

cores, with lithotype discrimination. TlL, thinly laminated limestones; NL, nodular

limestones; OSh, organic shales.
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Finally, the nearly parallel, well-defined lamination and the proven benthic

microbial deposition allow classification of the microbialites of the study interval

as stratiform, peloidal stromatolites (Kalkowsky 1908; Riding 1999; Flügel 2010).
The apparent abrupt shift that marks the end of stromatolite development

and the onset of deposition of thinly laminated limestone can also represent a

change in the lake’s main processes of CaCO3 precipitation. Instead of

precipitation directly conditioned by the metabolism of bacteria which

constitutes microbial mats present in the lake substrate, the formation of

calcite microcrystals that make up the laminated limestones is considered to

have occurred in the pelagic zone, with planar lamination dictated by seasonal

controls (“whiting” events; Kelts and Hsü 1978). Biological influence would

still be present in carbonate precipitation but would be related to planktonic

activity, a hypothesis also raised by Heimhofer et al. (2010).

Paleoenvironmental and Paleodepositional Insights

Petrographic and geochemical data of both well cores indicate variations

among the three analyzed lithotypes, reflecting changes in paleoenvironmental

and genetic processes during their deposition.

Organic shales are the first deposited lithotype of the studied succession.

Besides the presumably high contents of organic matter, an abundance of

disarticulated ostracod valves and sparse carbonate intraclasts are also

observable. Enrichment and preservation of organic matter are commonly

related to high primary production allied to dysoxic to anoxic environments,

where the rate of organic-matter accumulation must be higher than the rate of

the combined effects of decay by microbes and dilution by clastic and

carbonate sediments (Bohacs et al. 2000; Renaut and Gierlowski-Kordesch

2010). As long as the source of organic matter may be autogenic, allogenic, or

a combination of both, the centimetric plant fragments found in both cores give

evidence that allogenic contribution was present, but it is inferable that the

lithotype also had autogenic organic-matter precipitation. The existence of an

anoxic bottom, limiting scavenging and the activity of bacterial respiration,

favors the preservation of organic matter (Bohacs et al. 2000).

In both studied cores, it is observed that the relative increase in the peaks of

phosphorus correspond to specific laminae of the organic shales immediately

below the first nodular limestones. Weathering of phosphate-bearing igneous

and sedimentary rocks is the primary source of phosphorus in lakes (Cohen

2003). Its cycle includes delivery from the catchment, storage in the

FIG. 12.—Simplified depositional model of the

lithotypes that constitute the studied interval. I)

Organic-shale deposition with a large contribution

of organic matter and disarticulated ostracod

valves. Anoxic settings would already be

prevalent. II) Biologically induced mineralization

(organomineralization) of stromatolites under

anoxic conditions and with lower rates of water

input. III) Deposition of laminated limestones

from the precipitation of calcite crystals formed in

the epilimnion of a stratified lake.
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sediments, and release during anoxic conditions (Corella et al. 2012; Evans

et al. 2019), where microbial activity can strongly affect the latter process

(Cohen 2003). Therefore, the observed P increases in organic shales suggest a

pronounced anoxic setting at least in the bottom waters of the paleolake.

Also, redox transformations govern the chemistry of Fe and Mn in oxic

and anoxic waters and sediments, providing information about changing

redox conditions in lakes (Davison 1993). Under reducing conditions, Fe

and Mn become more soluble, Mn more easily than Fe (Mackereth 1966;

Boyle 2001). As such, an increase in the relative quantity of Fe concerning

Mn indicate the onset of anaerobic conditions of bottom lake waters of a

stratified lake or deoxygenation derived from organic decay following

enhanced biological productivity (Davies et al. 2015). In the AB and CH

cores, the contents of Fe are much higher than Mn, and no correlation

between them is observable. Thus, the values of the Fe/Mn ratio would be

higher on the interval comprised by the organic shales (P0 to Laminaset

A), pointing to less oxygenated conditions during the deposition of this

lithotype.

The poor oxygenation of the lake bottom would also present a

hostile environment for most ostracod species, which is not consistent

with a large number of valves in this interval. The abundance of

ostracods indicates an ostracod bloom, which probably occurred in

shallow freshwater with a sudden high nutrient enrichment (Kelts

1988; El Hajj et al. 2021). Nonetheless, this same high nutrient influx

would also promote algal or cyanobacterial blooms, which produce

lethal toxins and may initiate a mass mortality event (El Hajj et al.

2021). Slow compaction would later promote the disarticulation of the

deposited carapaces.

The existence of an environment where ostracods could thrive and even

bloom suggests that the waters of the lake were already stratified or beginning

to stratify at the time of deposition of the organic shales. However, input of

water and detrital sediment, evident by the enrichment of Si, K, and Al and

depletion of Ca, would contribute to lake water mixing at this stage. Finally, it

is possible to affirm that more humid conditions prevailed in the environment

during the deposition of this lithotype, where the paleolake likely received

regular fluvial input. This is evident both from the siliciclastic contribution

and the aforementioned higher quantity of terrestrial plant fragments.

The deposition of nodular limestones (planar stromatolites) followed the

sedimentation of organic shales. The negligible siliciclastic input observed

in both nodular and thinly laminated limestones suggests that carbonate

precipitation took place in a closed to semi-closed lake characterized by a

predominantly arid climate, although occasional rainfall events occurred. The

chemical composition of these limestones also reflects the deposition in this

environment. Calcium has both allochthonous (erosional) and autochthonous

(in situ precipitation) sources (Cohen 2003), where source predominance can

be deduced by its relationship with strontium (e.g., Kylander et al. 2011;

Davies et al. 2015; Evans et al. 2019). The lack of correlation of Ca with Sr

and the positive correlations of Sr and typically allogenically derived elements

(K and Al) throughout the carbonates corroborates that autochthonous

precipitation was the principal process involved in the formation of the

nodular and thinly laminated limestones, with little detrital influence.

Variations of S and Fe, with a positive correlation between these two

elements in the analyzed cores, can be associated with the observed

early diagenetic framboidal pyrite microcrystals, which replace calcite

microcrystals and organic matter in the stromatolites. The formation of

microcrystalline framboidal pyrites can be related to high sulfide

production as a result of low O2 contents and high bacterial sulfate-

reduction rates in the benthic zone of the paleolake, which would favor

porewater FeS saturation, leading to the formation of framboidal pyrite

during the first stages of diagenesis (Taylor and Macquaker 2000; Herndon

et al. 2018). Also, the average small sizes of the observed pyrites indicate that

its formation occurred under euxinic conditions (Wilkin et al. 1996). These

observations lead to the assumption that the lake bottom was still poorly

oxygenated during the biologically induced mineralization of the stromatolites.

Hypersaline conditions being the most favorable to stromatolite spreading

is due to the absence of, in order of importance: 1) algal metaphytes, which

would promote competition for light and space and 2) metazoans, which

would promote grazing of the microbial mats (Farmer 1992; Des Marais

1995). Therefore, documentation of widespread stromatolite development in

saline to hypersaline environments is not uncommon (e.g., Dupraz et al. 2004;

Dupraz and Visscher 2005; Vasconcelos et al. 2006; Oliveri et al. 2010;

Janhert and Collins 2013). Warren et al. (2017), based on the formation of

halite hopper crystals and other salt pseudomorphs in the thinly laminated

limestones of the Crato Member (also observed by Martill et al. 2007b),

pointed to a shallow-water lacustrine environment as the most likely setting

for the deposition of the stromatolite field presented in their study, which is

probably located a few meters above the one described here.

However, previously published d18O data (Neumann 1999; Rodrigues

2015) and those presented here for the same interval, indicate light overall

values of d18O, suggesting that calcite precipitation occurred in a freshwater

environment (Leng and Marshall 2004). Heavier d18O values can be observed

in the first laminae of the nodular limestones of both cores, possibly indicating

the onset of short-lived increased evaporation rates. Nonetheless, this trend is

readily reversed to lighter values and is still far below the ones that a saline

environment should display, where it is expected to find heavier d18O values

due to the loss of 16O to evaporation (Leng and Marshall 2004). Based on this

assumption, factors other than the higher rates of evaporation might have

acted for a lower discharge of water into the lake during the deposition of

carbonates, where the movement of blocks by tectonic action is a plausible

hypothesis (Carroll and Bohacs 1999).

Varejão et al. (2021) address the apparent inconsistency regarding the

d18O values with a hypersaline lake environment for the lower thinly

laminated limestones of Crato Member. These authors point to the

possible distorting effects of meteoric diagenesis, which would not nullify

the paleoenvironmental interpretations. Although the action of meteoric

diagenesis cannot easily be validated or discarded in the studied interval,

we did not find any direct evidence of this process either.

Therefore, although numerous studies show that seasonal hypersalinity

was a recurrent lake attribute throughout the deposition of the Crato

Member’s upper thinly laminated limestones, we do not observe any

direct evidence of high salinity during precipitation of the stromatolites

presented here. Instead, the data support that organomineralization took

place in a freshwater, possibly brackish lake.

Several environmental factors control the d13C of dissolved inorganic

carbonate (DIC), like changes in atmospheric equilibrium, aquatic photo-

synthesis, pH of an aquatic environment, and the input of land-plant

debris, besides postdepositional processes (Talbot 1990; Zeebe and Wolf-

Gladrow 2001; Deocampo 2010). The resulting d13C logs of the studied

cores present remarkable similarity and seem strongly conditioned by

lithotype. The negative excursion of the bottom laminae of the nodular

limestones can be at least partially attributed to the decomposition of the

organic matter of the microbial mats that constitutes either the organic

shales or the thick dark laminae of the stromatolites. Microbial mats can

yield strong negative d13Corg signatures (Schildlowski 2000), and the

dissolution of this material under anoxic bottom lake waters, releasing 12C

into the DIC pool, tends to produce lighter d13C values. On the other hand,

the loss of more reactive components of organic matter during the early

stages of diagenesis can also explain the negative shift in this interval,

because this process can result in much more negative d13C values for

organic matter (Cohen 2003). At last, considering the stratified nature of

the lake, it is plausible that an ongoing process of methanogenesis at the

sediment–water interface could have also influenced the isotopic carbon

signature of these rocks (Talbot and Kelts 1986; Cohen 2003).

An increase of d13C values towards the top of the cores partly evidences

the end of stromatolite precipitation and the beginning of the deposition of

thinly laminated limestone, where the latter lithotype shows positive d13C
values. A more stable lake-water thermal stratification (meromixis) relates
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to this trend. In this context, the aqueous HCO3
– of the epilimnion waters

tends to be more balanced in relation to atmospheric CO2. A prolongation

of the chemical stratification of lake waters would then result in an

enrichment of the d13C values of the DIC pool, with limited input of 12C-

rich waters to the epilimnion (Cohen 2003; Heimhofer et al. 2010). This

behavior indicates that distinct CaCO3 precipitation mechanisms dictate

the genesis of the two carbonate lithotypes, where the microcrystals,

which compose most of the thinly laminated limestones, were formed in

the pelagic zones and then settled to the lake bottom.

The positive correlation between Mn and Ca also points to the formation of

Mn(II) carbonate minerals (e.g., rhodochrosite, kutnahorite), with little or no

precipitation as sulfide minerals, following the model proposed by Herndon

et al. (2018). Part of the calcite precipitated in the epilimnion dissolves as it

settles into the chemocline, where Mn-carbonate nucleates, with no reductive

dissolution of Mn(IV) oxides. Notwithstanding, more comprehensive studies

about which parameters would control the precipitation of Mn in the water

column and its incorporation into the sediments of the Crato Member’s
paleolake are needed.

A simplified three-step depositional model comprising each lithotype in

the studied interval and its respective paleoenvironmental settings are

illustrated in Figure 12. It starts with: I) the deposition of the organic shales,

which occurred in the benthic and anoxic zones of the paleolake, with a

significant contribution of organic matter sourced presumably by a combination

of autochthonous and allochthonous material. Also, there was the distinctive

incorporation of ostracod valves throughout the deposition of this lithotype. II)

Biologically induced mineralization (organomineralization) took place as the

forming process of the nodular limestones (planar stromatolites), occurring in

the anoxic littoral to sublittoral settings of a very calm and closed lake, which

allowed the lateral continuity of laminae preservation. Low water and

sediment inflow rates prevailed at this time, favoring carbonate concentration

and precipitation. III) Finally, precipitation controlled by seasonal variations

occurred in the pelagic and more oxygenated zones (epilimnion) of a

chemically stratified lake. The formed microcrystals then settled in the anoxic

benthic zone (hypolimnion). Low inflow rates of water and sediment also

contributed to prevent water mixing and helped maintain stratification.

The remarkable similarity observed between the stromatolites of the

studied interval and its extensive lateral occurrence testify to the formation

of a kilometric-wide biostrome, which reflects the onset of biochemical

changes over large distances and is necessarily a result of a regional event

(Ibarra and Corsetti 2016). The described geochemical data suggest that

this phenomenon occurred in a closed to semi-closed continuously

stratified paleolake (Leng and Marshall 2004; Xiong et al. 2021).

Microbialite spreading as responsive to major geologic events is frequently

reported in the literature, because dramatic environmental changes and

geochemistry can affect water saturation, oxygenation, and reduction of EPS

interaction (competition, grazing) with diverse eukaryotic organisms. This

trend is observed in relatively recent and locally relevant climatic changes

(e.g., Villafañe et al. 2021), in global-scale events, like the one which signal

the Permian–Triassic boundary (e.g., Kershaw et al. 2002; Hips and Haas

2006), and was also documented in environmentally stressful events related to

the early Aptian (Immenhauser et al. 2005), among others (see Mata and

Bottjer 2012).

Nevertheless, Aptian microbialite occurrences in neighboring basins,

like the ones of the Codó Formation of Parnaíba Basin (Bahniuk et al.

2015) and the Crato Formation of Jatobá Basin (Gratzer et al. 2013),

exhibit similar characteristics (although not the same lamination pattern)

and may be related to processes like those that formed the stromatolites

described herein, possibly deriving from the same event.

It is challenging to identify the precise factors contributing to the

formation of this vast biostrome and its possible microbial occurrences.

However, the onset of abrupt rises in atmospheric CO2 levels during

Oceanic Anoxic Events (OAEs) could have induced climatic disturbances

and subsequent environmental changes that impacted the growth and

propagation of stromatolite ecosystems, as suggested by Pietzsch et al.

(2020) for the coeval Barra Velha Formation.

CONCLUSIONS

1) Through a multiscale analysis of well cores, we characterize distant

but nearly identical occurrences of relatively thin layers of sedimen-

tary rocks. This approach reveals the extensive occurrence of a succes-

sion encompassing three lithotypes and their main characteristics.

Geochemical investigation allows us to reconstruct the main attributes

of the depositional paleoenvironment of these lithotypes. The sedi-

mentation of the succession occurred in anoxic conditions of the ben-

thonic zone of the sub-marginal area of a closed to semi-closed

paleolake.

2) The stromatolites of the studied horizon show well-demarcated inter-

nal fabrics and compositional variations, which reflect changes in

environmental settings on regional and local scales. The record of sim-

ilar fabric-pattern occurrences in distant locations suggests that the

processes controlling these changes must have been relatively uni-

form, and thus reflect regional processes. However, overall differences

in chemical composition of the samples are notable and interpretable

as an expression of local environmental and diagenetic settings.

3) The stromatolite bodies were formed chiefly by in situ precipitation trig-

gered by organic-matter degradation performed by bacteria (presumably

SRB). This process occurred in the sublittoral benthonic zone of a fresh-

water lake and under anoxic, possibly euxinic, conditions. The precipita-

tion of the thinly laminated limestones that overlie the stromatolites

marks an apparent stage of water stratification, where calcite microcrys-

tals formed in the epilimnion and were deposited on the lake bottom.

4) The precipitation of a kilometric-wide biostrome, traceable in an area

of about 600 km2, is evidence of a regional geological event. This

microbialitic horizon lies among the first-deposited limestones of the

Crato Member and is assigned as a new marker bed in the Araripe

Basin. Furthermore, the horizon described here is one of the world’s
best examples of an ancient microbialite field, with unparalleled simi-

larity and traceability between exposures.
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