3,459 research outputs found

    Linking human well-being and jellyfish: Ecosystem services, impacts, and societal responses

    Get PDF
    William H. Graham et al.© The Ecological Society of America. Jellyfish are usually perceived as harmful to humans and are seen as >pests>. This negative perception has hindered knowledge regarding their value in terms of ecosystem services. As humans increasingly modify and interact with coastal ecosystems, it is important to evaluate the benefits and costs of jellyfish, given that jellyfish bloom size, frequency, duration, and extent are apparently increasing in some regions of the world. Here we explore those benefits and costs as categorized by regulating, supporting, cultural, and provisioning ecosystem services. A geographical perspective of human vulnerability to jellyfish over four categories of human well-being (health care, food, energy, and freshwater production) is also discussed in the context of thresholds and trade-offs to enable social adaptation. Whereas beneficial services provided by jellyfish likely scale linearly with biomass (perhaps peaking at a saturation point), non-linear thresholds exist for negative impacts to ecosystem services. We suggest that costly adaptive strategies will outpace the beneficial services if jellyfish populations continue to increase in the future.Funding for the National Center for Ecological Analysis and Synthesis comes from National Science Foundation Grant DEB-94-21535, the University of California at Santa Barbara, and the State of CaliforniaPeer Reviewe

    The Charisma of Coastal Ecosystems: Addressing the Imbalance

    Get PDF
    Coastal ecosystems including coral reefs, mangrove forests, seagrass meadows, and salt marshes are being lost at alarming rates, and increased scientific understanding of causes has failed to stem these losses. Coastal habitats receive contrasting research effort, with 60% of all of the published research carried out on coral reefs, compared to 11–14% of the records for each of salt marshes, mangrove forests, and seagrass meadows. In addition, these highly connected and interdependent coastal ecosystems receive widely contrasting media attention that is disproportional to their scientific attention. Seagrass ecosystems receive the least attention in the media (1.3% of the media reports) with greater attention on salt marshes (6.5%), considerably more attention on mangroves (20%), and a dominant focus on coral reefs, which are the subject of three in every four media reports on coastal ecosystems (72.5%). There are approximately tenfold lower reports on seagrass meadows in the media for every scientific paper published (ten), than the 130–150 media reports per scientific paper for mangroves and coral reefs. The lack of public awareness of losses of less charismatic ecosystems results in the continuation of detrimental practices and therefore contributes to continued declines of coastal ecosystems. More effective communication of scientific knowledge about these uncharismatic but ecologically important coastal habitats is required. Effective use of formal (e.g., school curricula, media) and informal (e.g., web) education avenues and an effective partnership between scientists and media communicators are essential to raise public awareness of issues, concerns, and solutions within coastal ecosystems. Only increased public understanding can ultimately inform and motivate effective management of these ecologically important coastal ecosystems

    Big data analyses reveal patterns and drivers of the movements of southern elephant seals

    Full text link
    The growing number of large databases of animal tracking provides an opportunity for analyses of movement patterns at the scales of populations and even species. We used analytical approaches, developed to cope with big data, that require no a priori assumptions about the behaviour of the target agents, to analyse a pooled tracking dataset of 272 elephant seals (Mirounga leonina) in the Southern Ocean, that was comprised of >500,000 location estimates collected over more than a decade. Our analyses showed that the displacements of these seals were described by a truncated power law distribution across several spatial and temporal scales, with a clear signature of directed movement. This pattern was evident when analysing the aggregated tracks despite a wide diversity of individual trajectories. We also identified marine provinces that described the migratory and foraging habitats of these seals. Our analysis provides evidence for the presence of intrinsic drivers of movement, such as memory, that cannot be detected using common models of movement behaviour. These results highlight the potential for big data techniques to provide new insights into movement behaviour when applied to large datasets of animal tracking.Comment: 18 pages, 5 figures, 6 supplementary figure

    Exploring Kepler Giant Planets in the Habitable Zone

    Get PDF
    The Kepler mission found hundreds of planet candidates within the habitable zones (HZ) of their host star, including over 70 candidates with radii larger than 3 Earth radii (RR_\oplus) within the optimistic habitable zone (OHZ) (Kane et al. 2016). These giant planets are potential hosts to large terrestrial satellites (or exomoons) which would also exist in the HZ. We calculate the occurrence rates of giant planets (Rp=R_p =~3.0--25~RR_\oplus) in the OHZ and find a frequency of (6.5±1.9)%(6.5 \pm 1.9)\% for G stars, (11.5±3.1)%(11.5 \pm 3.1)\% for K stars, and (6±6)%(6 \pm 6)\% for M stars. We compare this with previously estimated occurrence rates of terrestrial planets in the HZ of G, K and M stars and find that if each giant planet has one large terrestrial moon then these moons are less likely to exist in the HZ than terrestrial planets. However, if each giant planet holds more than one moon, then the occurrence rates of moons in the HZ would be comparable to that of terrestrial planets, and could potentially exceed them. We estimate the mass of each planet candidate using the mass-radius relationship developed by Chen & Kipping (2016). We calculate the Hill radius of each planet to determine the area of influence of the planet in which any attached moon may reside, then calculate the estimated angular separation of the moon and planet for future imaging missions. Finally, we estimate the radial velocity semi-amplitudes of each planet for use in follow up observations.Comment: 19 Pages, 16 Figures, 5 Table

    Mating system, sex ratio, and persistence of females in the gynodioecious shrub Daphne laureola L. (Thymelaeaceae)

    Get PDF
    Although in gynodioecious populations male steriles require a fecundity advantage to compensate for their gametic disadvantage, southern Spanish populations of the long-lived shrub Daphne laureola do not show any fecundity advantage over hermaphrodites in terms of seed production and early seedling establishment. By using allozyme markers, we assess the mating system of this species in five populations differing in sex ratio, and infer levels of inbreeding depression over the whole life cycle by comparing the inbreeding coefficients at the seed and adult plant stages. Extremely low outcrossing rates (0.001oto0.125) were consistently found for hermaphrodites in all populations, whereas, as expected, female progeny were entirely outcrossed. In most populations, offspring were much more inbred than their parents, and heterozygosity of adults was greater than expected from outcrossing rate estimates, with very few selfed progeny appearing to reproduce in the field. The combination of extensive selfing in hermaphrodites and a strong inbreeding depression expressed late in the life cycle (and thus, only estimable by indirect measures based on genetic markers) may explain the persistence and high frequency of D. laureola females in southern Spanish populations.Peer reviewe

    Beyond Missing Heritability: Prediction of Complex Traits

    Get PDF
    Despite rapid advances in genomic technology, our ability to account for phenotypic variation using genetic information remains limited for many traits. This has unfortunately resulted in limited application of genetic data towards preventive and personalized medicine, one of the primary impetuses of genome-wide association studies. Recently, a large proportion of the “missing heritability” for human height was statistically explained by modeling thousands of single nucleotide polymorphisms concurrently. However, it is currently unclear how gains in explained genetic variance will translate to the prediction of yet-to-be observed phenotypes. Using data from the Framingham Heart Study, we explore the genomic prediction of human height in training and validation samples while varying the statistical approach used, the number of SNPs included in the model, the validation scheme, and the number of subjects used to train the model. In our training datasets, we are able to explain a large proportion of the variation in height (h2 up to 0.83, R2 up to 0.96). However, the proportion of variance accounted for in validation samples is much smaller (ranging from 0.15 to 0.36 depending on the degree of familial information used in the training dataset). While such R2 values vastly exceed what has been previously reported using a reduced number of pre-selected markers (<0.10), given the heritability of the trait (∼0.80), substantial room for improvement remains

    Gelatinous Zooplankton Biomass In the Global Oceans: Geographic Variation and Environmental Drivers

    Get PDF
    Aim Scientific debate regarding the future trends, and subsequent ecological, biogeochemical and societal impacts, of gelatinous zooplankton (GZ) in a changing ocean is hampered by lack of a global baseline and an understanding of the causes of biogeographic patterns. We address this by using a new global database of GZ records to test hypotheses relating to environmental drivers of biogeographic variation in the multidecadal baseline of epipelagic GZ biomass in the world\u27s oceans. Location Global oceans. Methods Over 476,000 global GZ data and metadata items were assembled from a variety of published and unpublished sources. From this, a total of 91,765 quantitative abundance data items from 1934 to 2011 were converted to carbon biomass using published biometric equations and species-specific average sizes. Total GZ, Cnidaria, Ctenophora and Chordata (Thaliacea) biomass was mapped into 5° grid cells and environmental drivers of geographic variation were tested using spatial linear models. Results We present JeDI (the Jellyfish Database Initiative), a publically accessible database available at http://jedi.nceas.ucsb.edu. We show that: (1) GZ are present throughout the world\u27s oceans; (2) the global geometric mean and standard deviation of total gelatinous biomass is 0.53 ± 16.16 mg C m−3, corresponding to a global biomass of 38.3 Tg C in the mixed layer of the ocean; (3) biomass of all gelatinous phyla is greatest in the subtropical and boreal Northern Hemisphere; and (4) within the North Atlantic, dissolved oxygen, apparent oxygen utilization and sea surface temperature are the principal drivers of biomass distribution. Main conclusions JeDI is a unique global dataset of GZ taxa which will provide a benchmark against which future observations can be compared and shifting baselines assessed. The presence of GZ throughout the world\u27s oceans and across the complete global spectrum of environmental variables indicates that evolution has delivered a range of species able to adapt to all available ecological niches

    Prediction of adult height in girls: the Beunen-MalinaFreitas method

    Get PDF
    The purpose of this study was to validate and cross-validate the Beunen-Malina-Freitas method for non-invasive prediction of adult height in girls. A sample of 420 girls aged 10–15 years from the Madeira Growth Study were measured at yearly intervals and then 8 years later. Anthropometric dimensions (lengths, breadths, circumferences, and skinfolds) were measured; skeletal age was assessed using the Tanner-Whitehouse 3 method and menarcheal status (present or absent) was recorded. Adult height was measured and predicted using stepwise, forward, and maximum R2 regression techniques. Multiple correlations, mean differences, standard errors of prediction, and error boundaries were calculated. A sample of the Leuven Longitudinal Twin Study was used to cross-validate the regressions. Age-specific coefficients of determination (R2) between predicted and measured adult height varied between 0.57 and 0.96, while standard errors of prediction varied between 1.1 and 3.9 cm. The cross-validation confirmed the validity of the Beunen-Malina-Freitas method in girls aged 12–15 years, but at lower ages the cross-validation was less consistent. We conclude that the Beunen-Malina-Freitas method is valid for the prediction of adult height in girls aged 12–15 years. It is applicable to European populations or populations of European ancestry.info:eu-repo/semantics/publishedVersio
    corecore