132 research outputs found

    Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases

    Get PDF
    Ciliopathies; Photoreceptors; RetinaCiliopatĂ­as; Fotorreceptores; RetinaCiliopaties; Fotoreceptors; RetinaMutations in the photoreceptor-specific C2orf71 gene (also known as photoreceptor cilium actin regulator protein PCARE) cause autosomal recessive retinitis pigmentosa type 54 and cone-rod dystrophy. No treatments are available for patients with C2orf71 retinal ciliopathies exhibiting a severe clinical phenotype. Our understanding of the disease process and the role of PCARE in the healthy retina significantly limits our capacity to transfer recent technical developments into viable therapy choices. This study summarizes the current understanding of C2orf71-related retinal diseases, including their clinical manifestations and an unclear genotype-phenotype correlation. It discusses molecular and functional studies on the photoreceptor-specific ciliary PCARE, focusing on the photoreceptor cell and its ciliary axoneme. It is proposed that PCARE is an actin-associated protein that interacts with WASF3 to regulate the actin-driven expansion of the ciliary membrane during the development of a new outer segment disk in photoreceptor cells. This review also introduces various cellular and animal models used to model these diseases and provides an overview of potential treatments.This research project was funded by Instituto de Salud Carlos III, grant number PI22/01747

    Disseny d’un equalitzador actiu

    Get PDF
    En aquest treball de fi de carrera s’ha realitzat el disseny d’un equalitzador actiu. Aquest equalitzador està format pel processador de senyal TAS3002 i pel microcontrolador PIC18F452. La senyal analògica entra pel jack RCA1 i es transformada a digital amb el ADC del TAS3002 per així ser processada i filtrada amb l’equalitzador. Aquesta senyal pot ser amplificada o atenuada a partir del volum, els greus i els aguts. Posteriorment, la senyal torna a ser convertida a analògica a partir del DAC del TAS3002 i enviada al jack RCA2. Tots els paràmetres i registres de control del TAS3002 es controlen a partir del microcontrolador PIC18F452. S’utilitza la interfície I2C per comunicar els dos dispositius i així enviar dades. Tots els registres han estat prèviament programats amb el software MPLAB. S’ha realitzat la placa electrònica en un circuit imprès de dos capes, que realitzes el funcionament anterior

    Disseny d’un equalitzador actiu

    Get PDF
    En aquest treball de fi de carrera s’ha realitzat el disseny d’un equalitzador actiu. Aquest equalitzador està format pel processador de senyal TAS3002 i pel microcontrolador PIC18F452. La senyal analògica entra pel jack RCA1 i es transformada a digital amb el ADC del TAS3002 per així ser processada i filtrada amb l’equalitzador. Aquesta senyal pot ser amplificada o atenuada a partir del volum, els greus i els aguts. Posteriorment, la senyal torna a ser convertida a analògica a partir del DAC del TAS3002 i enviada al jack RCA2. Tots els paràmetres i registres de control del TAS3002 es controlen a partir del microcontrolador PIC18F452. S’utilitza la interfície I2C per comunicar els dos dispositius i així enviar dades. Tots els registres han estat prèviament programats amb el software MPLAB. S’ha realitzat la placa electrònica en un circuit imprès de dos capes, que realitzes el funcionament anterior

    Repopulation of decellularized retinas with hiPSC-derived retinal pigment epithelial and ocular progenitor cells shows cell engraftment, organization and differentiation

    Get PDF
    Decellularization; Ocular progenitors; RetinaDescelularización; Progenitores oculares; RetinaDescel·lularització; Progenitors oculars; RetinaThe retinal extracellular matrix (ECM) provides architectural support, adhesion and signal guidance that controls retinal development. Decellularization of the ECM affords great potential to tissue engineering; however, how structural retinal ECM affects in vitro development, differentiation and maturation of ocular cells remains to be elucidated. Here, mouse and porcine retinas were decellularized and the protein profile analyzed. Acellular retinal ECM (arECM) scaffolds were then repopulated with human iPSC-derived retinal pigment epithelial (RPE) cells or ocular progenitor cells (OPC) to assess their integration, proliferation and organization. 3837 and 2612 unique proteins were identified in mouse and porcine arECM, respectively, of which 93 and 116 proteins belong to the matrisome. GO analysis shows that matrisome-related proteins were associated with the extracellular region and cell junction and KEGG pathways related to signalling transduction, nervous and endocrine systems and cell junctions were enriched. Interestingly, mouse and porcine arECMs were successfully repopulated with both RPE and OPC, the latter exhibiting cell lineage-specific clusters. Retinal cells organized into different layers containing well-defined areas with pigmented cells, photoreceptors, Müller glia, astrocytes, and ganglion cells, whereas in other areas, conjunctival/limbal, corneal and lens cells re-arranged in cell-specific self-organized areas. In conclusion, our results demonstrated that decellularization of both mouse and porcine retinas retains common native ECM components that upon cell repopulation could guide similar ocular cell adhesion, migration and organization.This work was supported by La Marató de TV3 Foundation (484/C/2012); ERA-NET EuroNanoMed III-AC19/00080/ISCIII (CELLUX); Instituto de Salud Carlos III (CA18/00045 and PI18/00219); and the European Social Fund, the Ministerio de Ciencia, Innovación y Universidades, which is part of the Agencia Estatal de Investigación (PTA2018-016371-I). A.D. was supported by PT13/0001/0041 PRB2-ISCIII-SGEFI-FEDER-PE I+D+i 2013–2016 and ISCIII-FEDER RETICS (Oftared; RD16/0008). We thank the CERCA Programme/Generalitat de Catalunya for institutional support

    All-trans retinoic acid modulates pigmentation, neuroretinal maturation, and corneal transparency in human multiocular organoids

    Get PDF
    Ácido transretinoico; Retina; Células madreÀcid transreitnoic; Retina; Cèl·lules mareAll-trans retinoic acid; Retina; Stem cellsBackground All-trans retinoic acid (ATRA) plays an essential role during human eye development, being temporally and spatially adjusted to create gradient concentrations that guide embryonic anterior and posterior axis formation of the eye. Perturbations in ATRA signaling can result in severe ocular developmental diseases. Although it is known that ATRA is essential for correct eye formation, how ATRA influences the different ocular tissues during the embryonic development of the human eye is still not well studied. Here, we investigated the effects of ATRA on the differentiation and the maturation of human ocular tissues using an in vitro model of human-induced pluripotent stem cells-derived multiocular organoids. Methods Multiocular organoids, consisting of the retina, retinal pigment epithelium (RPE), and cornea, were cultured in a medium containing low (500 nM) or high (10 µM) ATRA concentrations for 60 or 90 days. Furthermore, retinal organoids were cultured with taurine and T3 to further study photoreceptor modulation during maturation. Histology, immunochemistry, qPCR, and western blot were used to study gene and protein differential expression between groups. Results High ATRA levels promote the transparency of corneal organoids and the neuroretinal development in retinal organoids. However, the same high ATRA levels decreased the pigmentation levels of RPE organoids and, in long-term cultures, inhibited the maturation of photoreceptors. By contrast, low ATRA levels enhanced the pigmentation of RPE organoids, induced the opacity of corneal organoids—due to an increase in collagen type IV in the stroma— and allowed the maturation of photoreceptors in retinal organoids. Moreover, T3 promoted rod photoreceptor maturation, whereas taurine promoted red/green cone photoreceptors. Conclusion ATRA can modulate corneal epithelial integrity and transparency, photoreceptor development and maturation, and the pigmentation of RPE cells in a dose-dependent manner. These experiments revealed the high relevance of ATRA during ocular tissue development and its use as a potential new strategy to better modulate the development and maturation of ocular tissue through temporal and spatial control of ATRA signaling.This research project was funded by a grant from ERA-NET EuroNanoMed III-ISCIII (AC19/00080) (CELLUX), and Instituto de Salud Carlos III (PI18/00219). A.D. was supported by ISCIII-FEDER RETICS (Oftared; RD16/0008). H.IM. was supported by EuroNanoMed III-ISCIII (AC19/00080)

    Repopulation of decellularized retinas with hiPSC-derived retinal pigment epithelial and ocular progenitor cells shows cell engraftment, organization and differentiation

    Get PDF
    The retinal extracellular matrix (ECM) provides architectural support, adhesion and signal guidance that controls retinal development. Decellularization of the ECM affords great potential to tissue engineering; however, how structural retinal ECM affects in vitro development, differentiation and maturation of ocular cells remains to be elucidated. Here, mouse and porcine retinas were decellularized and the protein profile analyzed. Acellular retinal ECM (arECM) scaffolds were then repopulated with human iPSC-derived retinal pigment epithelial (RPE) cells or ocular progenitor cells (OPC) to assess their integration, proliferation and organization. 3837 and 2612 unique proteins were identified in mouse and porcine arECM, respectively, of which 93 and 116 proteins belong to the matrisome. GO analysis shows that matrisome-related proteins were associated with the extracellular region and cell junction and KEGG pathways related to signalling transduction, nervous and endocrine systems and cell junctions were enriched. Interestingly, mouse and porcine arECMs were successfully repopulated with both RPE and OPC, the latter exhibiting cell lineage-specific clusters. Retinal cells organized into different layers containing well-defined areas with pigmented cells, photoreceptors, MĂźller glia, astrocytes, and ganglion cells, whereas in other areas, conjunctival/limbal, corneal and lens cells re-arranged in cell-specific self-organized areas. In conclusion, our results demonstrated that decellularization of both mouse and porcine retinas retains common native ECM components that upon cell repopulation could guide similar ocular cell adhesion, migration and organization

    Transplantation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in a Swine Model of Geographic Atrophy

    Get PDF
    Modelo animal; Medicina regenerativa; RetinaModel animal; Medicina regenerativa; RetinaAnimal model; Regenerative medicine; RetinaBackground: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). Methods: Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. Results: In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. Conclusions: These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA.This work was supported by Spanish Ministry of Science and Innovation (MICINN, RTI2018-095377-B-100), Instituto de Salud Carlos III ISCIII/FEDER (PRB2 PT13/0001/0041; TerCel RD16/0011/0024 and Oftared-RETICS RD16/0008), ERA-NET EuroNanoMed III/ISCIII (AC19/00080), the Catalan Government, AGAUR (2017-SGR-899), CERCA Programme/Generalitat de Catalunya, and by FundaciĂł Carmen i MÂŞ JosĂŠ GodĂł (FundaciĂł CMJ GodĂł 2017)

    ORIF Assisted by Open Subtalar Small Joint Arthroscopy for Intra-articular Displaced Calcaneus Fractures

    Get PDF
    Nanoscope; Calcaneal fracture; Small joint arthroscopyNanoscopio; Fractura de calcåneo; Artroscopia de pequeùas articulacionesNanoscopi; Fractura de calcani; Artroscòpia de petites articulacion

    Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner

    No full text
    The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia
    • …
    corecore