57 research outputs found

    Chemical compositions of fog and precipitation at Sejila Mountain in the southeast Tibetan Plateau, China

    Get PDF
    Chemical compositions of fog and rain water were measured between July 2017 and September 2018 at Sejila Mountain, southeast Tibet, where fog events frequently occurred in original fir forests at altitude 3950 m. Fog water samples were collected using a Caltech Active Strand Cloud Collector (CASCC), and rain samples were collected using a precipitation gauge. Differences were observed between fog water and rain composition for most analyzed ions. Ion abundance in fog water was Ca2+ > Cl− > Na+ > SO42− > Mg2+ > NH4+ >K+ > NO3− whereas an order of Ca2+ > Na+ > Cl− > Mg2+ > SO42− > NO3− > K+ > NH4+ was observed for rain water. All ion concentrations were higher in fog water than in rain water. Additionally, Ca2+ was the dominant cation in both fog and rain samples, accounting for more than half of all measured cations. NH4+ and SO42− concentrations were notable for being higher in fog than rain water when compared with other ions. For trace elements, Al, As, Mn and Se were the most abundant elements in fog water; only Al and As were detected in rain water. Seventy-two hour back-trajectory analysis showed that air masses during fog and/or rain events mainly came from the south of Sejila Mountain. Spearman correlation analysis and source contribution calculations indicated that both marine and terrestrial sources contributed to the observed ion concentrations. Considering the higher concentrations of NH4+ and higher ratio of NH4+/NO3− measured in fog than in rain, we suggest that quantification of fog nitrogen deposition and its ecological effect in this area should be given more attention

    Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale – A Case Study in the Ordos Plateau, China

    Get PDF
    Desertification is a serious threat to the ecological environment and social economy in our world and there is a pressing need to develop a reasonable and reproducible method to assess it at different scales. In this paper, the Ordos Plateau in China was selected as the research region and a quantitative method for desertification assessment was developed by using Landsat MSS and TM/ETM+ data on a regional scale. In this method, NDVI, MSDI and land surface albedo were selected as assessment indicators of desertification to represent land surface conditions from vegetation biomass, landscape pattern and micrometeorology. Based on considering the effects of vegetation type and time of images acquired on assessment indictors, assessing rule sets were built and a decision tree approach was used to assess desertification of Ordos Plateau in 1980, 1990 and 2000. The average overall accuracy of three periods was higher than 90%. The results showed that although some local places of Ordos Plateau experienced an expanding trend of desertification, the trend of desertification of Ordos Plateau was an overall decrease in from 1980 to 2000. By analyzing the causes of desertification processes, it was found that climate change could benefit for the reversion of desertification from 1980 to 1990 at a regional scale and human activities might explain the expansion of desertification in this period; however human conservation activities were the main driving factor that induced the reversion of desertification from 1990 to 2000

    Biological and genomic analysis of a symbiotic nitrogen fixation defective mutant in Medicago truncatula

    Get PDF
    Medicago truncatula has been selected as one of the model legume species for gene functional studies. To elucidate the functions of the very large number of genes present in plant genomes, genetic mutant resources are very useful and necessary tools. Fast Neutron (FN) mutagenesis is effective in inducing deletion mutations in genomes of diverse species. Through this method, we have generated a large mutant resource in M. truncatula. This mutant resources have been used to screen for different mutant using a forward genetics methods. We have isolated and identified a large amount of symbiotic nitrogen fixation (SNF) deficiency mutants. Here, we describe the detail procedures that are being used to characterize symbiotic mutants in M. truncatula. In recent years, whole genome sequencing has been used to speed up and scale up the deletion identification in the mutant. Using this method, we have successfully isolated a SNF defective mutant FN007 and identified that it has a large segment deletion on chromosome 3. The causal deletion in the mutant was confirmed by tail PCR amplication and sequencing. Our results illustrate the utility of whole genome sequencing analysis in the characterization of FN induced deletion mutants for gene discovery and functional studies in the M. truncatula. It is expected to improve our understanding of molecular mechanisms underlying symbiotic nitrogen fixation in legume plants to a great extent

    Artificial Neural Network-Based Microwave Satellite Soil Moisture Reconstruction over the Qinghai–Tibet Plateau, China

    No full text
    Soil moisture is a key parameter for land-atmosphere interaction system; however, fewer existing spatial-temporally continuous and high-quality observation records impose great limitations on the application of soil moisture on long term climate change monitoring and predicting. Therefore, this study selected the Qinghai–Tibet Plateau (QTP) of China as research region, and explored the feasibility of using Artificial Neural Network (ANN) to reconstruct soil moisture product based on AMSR-2/AMSR-E brightness temperature and SMAP satellite data by introducing auxiliary variables, specifically considering the sensitivity of different combination of input variables, number of neurons in hidden layer, sample ratio, and precipitation threshold in model building. The results showed that the ANN model had the highest accuracy when all variables were used as inputs, it had a network containing 12 neurons in a hidden layer, it had a sample ratio 80%-10%-10% (training-validation-testing), and had a precipitation threshold of 8.75 mm, respectively. Furthermore, validation of the reconstructed soil moisture product (named ANN-SM) in other period were conducted by comparing with SMAP (April 2019 to July 2021) for all grid cells and in situ soil moisture sites (August 2010 to March 2015) of QTP, which achieved an ideal accuracy. In general, the proposed method is capable of rebuilding soil moisture products by adopting different satellite data and our soil moisture product is promising for serving the studies of long-term global and regional dynamics in water cycle and climate

    Fine description of sedimentary system in Wuerxun Sag of Hailaer Basin

    No full text
    Wuerxun depression is one of the depressions with great exploration potential in Hailaer Basin and has submitted large-scale reserves. At present, it has entered the stage of fine exploration, and the exploration object has changed from structural reservoir to lithologic reservoir exploration. The remaining targets are mainly concentrated in the trough and surrounding areas, with strong concealment and difficult to identify. Fine identification of sand bodies, genesis, types and distribution of sedimentary fans are one of the key factors restricting oil and gas exploration. Based on core observation and genetic mechanism, three sedimentary facies models of Braided River Delta, fan delta and sublacustrine fan are established. In this paper, the method of “sequence control, cycle correlation and hierarchical closure” is used to fine characterize the fan delta sedimentary system in this area, which lays a foundation for the study of sedimentary microfacies of subdivision layers, optimization of lithologic reservoir targets and guidance of oil and gas exploration deployment

    Preparation, Characterization, and Performance Analysis of S-Doped Bi2MoO6 Nanosheets

    No full text
    S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6
    corecore