46 research outputs found

    Modeling Aerosol-Cloud-Precipitation Interactions in Mountainous Regions: Challenges in the Representation of Indirect Microphysical Effects with Impacts at Subregional Scales

    Get PDF
    In mountainous regions, the nonlinear thermodynamics of orographic land-atmosphere interactions (LATMI) in organizing and maintaining moisture convergence patterns on the one hand, and aerosol-cloud-precipitation interactions (ACPI) in modulating the vertical structure of precipitation and space-time variability of surface precipitation on the other, are difficult to separate unambiguously because the physiochemical characteristics of aerosols themselves exhibit large sub-regional scale variability. In this chapter, ACPI in the Central Himalayas are examined in detail using aerosol observations during JAMEX09 (Joint Aerosol Monsoon Campaign 2009) to specify CCN activation properties for simulations of a premonsoon convective storm using the Weather Research and Forecasting (WRF) version 3.8.1. The focus is on contrasting AIE during episodes of remote pollution run-up from the Indo-Gangetic Plains and when only local aerosols are present in Central Nepal. This study suggests strong coupling between the vertical structure of convection in complex terrain that governs the time-scales and spatial organization of cloud development, CCN activation rates, and cold microphysics (e.g. graupel production is favored by slower activation spectra) that result in large shifts in the spatial distribution of precipitation, precipitation intensity and storm arrival time

    Intrinsic correlation between the fraction of liquidlike zones and the beta relaxation in high-entropy metallic glasses

    Get PDF
    Lacking the structural information of crystalline solids, the origin of the relaxation dynamics of metallic glasses is unclear. Here, we report the evolution of stress relaxation of high-entropy metallic glasses with distinct ß relaxation behavior. The fraction of liquidlike zones, determined at each temperature by the intensity of stress decay, is shown to be directly related to both the aging process and the spectrum of relaxation modes obtained by mechanical spectroscopy. The results shed light on the intrinsic correlation between the static and dynamic mechanical response in high-entropy and conventional metallic glasses, pointing toward a sluggish diffusion high-entropy effect in the liquid dynamics.Postprint (author's final draft

    Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions

    Get PDF
    A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P <1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P <5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.Peer reviewe

    A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure

    Get PDF
    Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P <5 x 10(-8), false discovery rate <0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.Peer reviewe

    Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations

    No full text
    Satellite orographic precipitation estimates exhibit large errors with space-time structure tied to landform. Observations in the Southern Appalachian Mountains (SAM) suggest that low-level clouds and fog (LLCF) amplify mid-day rainfall via seeder-feeder interactions (SFI) at both high and low elevations. Here, a rainfall microphysics model constrained by fog observations was used first to reveal that fast SFI (2–5 min time-scales) modify the rain drop size distributions by increasing coalescence efficiency among small drops (&lt;0.7 mm diameter), whereas competition between coalescence and filament-only breakup dominates for larger drops (3–5 mm diameter). The net result is a large increase in the number concentrations of intermediate size raindrops in the 0.7–3 mm range and up to a ten-fold increase in rainfall intensity. Next, a 10-year climatology of satellite observations was developed to map LLCF. Combined estimates from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and CloudSat products reveal persistent shallower cloud base heights at high elevations enveloping the terrain. The regional cloud top height climatology derived from the MODIS (Moderate Resolution Imaging Spectroradiometer) shows high-frequency daytime LLCF over mountain ridges in the warm season shifting to river valleys at nighttime. In fall and winter, LLCF patterns define a cloud-shadow region east of the continental divide, consistent with downwind rain-shadow effects. Optical and microphysical properties from collocated MODIS and ground ceilometers indicate small values of vertically integrated cloud water path (CWP &lt; 100 g/m2), optical thickness (COT &lt; 15), and particle effective radius (CER) &lt; 15 μm near cloud top whereas surface observed CER ~25 μm changes to ~150 μm and higher prior to the mid-day rainfall. The vertical stratification of LLCF microphysics and SFI at low levels pose a significant challenge to satellite-based remote sensing in complex topography

    Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations

    No full text
    Satellite orographic precipitation estimates exhibit large errors with space-time structure tied to landform. Observations in the Southern Appalachian Mountains (SAM) suggest that low-level clouds and fog (LLCF) amplify mid-day rainfall via seeder-feeder interactions (SFI) at both high and low elevations. Here, a rainfall microphysics model constrained by fog observations was used first to reveal that fast SFI (2–5 min time-scales) modify the rain drop size distributions by increasing coalescence efficiency among small drops (&lt;0.7 mm diameter), whereas competition between coalescence and filament-only breakup dominates for larger drops (3–5 mm diameter). The net result is a large increase in the number concentrations of intermediate size raindrops in the 0.7–3 mm range and up to a ten-fold increase in rainfall intensity. Next, a 10-year climatology of satellite observations was developed to map LLCF. Combined estimates from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and CloudSat products reveal persistent shallower cloud base heights at high elevations enveloping the terrain. The regional cloud top height climatology derived from the MODIS (Moderate Resolution Imaging Spectroradiometer) shows high-frequency daytime LLCF over mountain ridges in the warm season shifting to river valleys at nighttime. In fall and winter, LLCF patterns define a cloud-shadow region east of the continental divide, consistent with downwind rain-shadow effects. Optical and microphysical properties from collocated MODIS and ground ceilometers indicate small values of vertically integrated cloud water path (CWP &lt; 100 g/m2), optical thickness (COT &lt; 15), and particle effective radius (CER) &lt; 15 μm near cloud top whereas surface observed CER ~25 μm changes to ~150 μm and higher prior to the mid-day rainfall. The vertical stratification of LLCF microphysics and SFI at low levels pose a significant challenge to satellite-based remote sensing in complex topography

    Cardiac Magnetic Resonance Assessment of the Protective Effect of Remote Ischemic Postconditioning on Coronary Microcirculation after Reperfusion Therapy for Acute ST-Segment Elevation Myocardial Infarction

    No full text
    This study intends to evaluate the characteristics of coronary microcirculatory function in patients with myocardial infarction undergoing reperfusion and its predictive value in assessing cardiac function, myocardial activity, recovery of ventricular wall motion after infarction, and distant myocardial remodeling by cardiac magnetic resonance technique (CMRI). Materials and Methods. The 293 cases of patients with myocardial infarction treated in our hospital from August 2017 to August 2021 were selected as the subjects of this retrospective study, 13 cases were shed due to transfer and moving, and the rest were divided into 140 cases each in the emergency and elective groups according to emergency percutaneous coronary intervention (PCI) and elective PCI. The patients’ myocardial infarct volume ventricular volume, microcirculatory obstruction volume ventricular volume, microcirculatory obstruction volume/myocardial infarct volume, and LVEF, combined with BP and troponin T, were analysed by CMR for comparative analysis, hemodynamic, and cardiac function index differences. Results. The hemodynamics (CO, CI, SV, SI, LVSW1, and LCW) measured at different times were significantly different between the two groups; patients in the emergency group had significantly lower EDV and ESV than the elective group at 7-10 d postoperatively; and EDV, ESV, and LVEF improved in both groups after 3 months, while EDV, ESV, and LVEF improved significantly better in the emergency group than in the elective group, and the difference was statistically significant (P<0.05). The myocardial infarct quality, VSM score, and ventricular wall motion abnormality score were significantly lower in the emergency group than in the elective group from 7 to 10 d after PCI; myocardial infarct quality, VSM score, and ventricular wall motion abnormality score improved in both groups at 3 months after PCI; and the degree of improvement of myocardial infarct quality and VSM score was significantly better in the emergency group than in the elective group (P<0.05). Conclusion. Acute myocardial infarction patients with significant effect of emergency PCI treatment can be on their postmyocardial infarction left ventricular function, and in the treatment of coronary heart disease, myocardial infarction diagnosis has a certain reference value
    corecore