13,746 research outputs found

    Direct measurement of decoherence for entanglement between a photon and stored atomic excitation

    Get PDF
    Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for storage times up to 21 microseconds, 700 times longer than the duration of the excitation pulse that creates the entanglement. To address the question of the security of entanglement-based cryptography implemented with this system, an investigation of the Bell violation as a function of the cross-correlation between the generated nonclassical fields is reported, with saturation of the violation close to the maximum value allowed by quantum mechanics.Comment: 4 pages, 3 figures. Minor changes. Published versio

    Topology of Knotted Optical Vortices

    Full text link
    Optical vortices as topological objects exist ubiquitously in nature. In this paper, by making use of the ϕ\phi-mapping topological current theory, we investigate the topology in the closed and knotted optical vortices. The topological inner structure of the optical vortices are obtained, and the linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P. R. China

    Effect of Transition Magnetic Moments on Collective Supernova Neutrino Oscillations

    Full text link
    We study the effect of Majorana transition magnetic moments on the flavor evolution of neutrinos and antineutrinos inside the core of Type-II supernova explosions. We find non-trivial collective oscillation effects relating neutrinos and antineutrinos of different flavors, even if one restricts the discussion to Majorana transition electromagnetic moment values that are not much larger than those expected from standard model interactions and nonzero neutrino Majorana masses. This appears to be, to the best of our knowledge, the only potentially observable phenomenon sensitive to such small values of Majorana transition magnetic moments. We briefly comment on the effect of Dirac transition magnetic moments and on the consequences of our results for future observations of the flux of neutrinos of different flavors from a nearby supernova explosion.Comment: 11 pages,appendix added, version accepted in JCA

    Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks

    Get PDF
    We demonstrate entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near maximum polarization entanglement. Entanglement is verified by way of the measured violation of a Bell inequality, and can be used for communication protocols such as quantum cryptography. The demonstrated quantum nodes and channels can be used as segments of a quantum repeater, providing an essential tool for robust long-distance quantum communication.Comment: 10 pages, 7 figures. Text revised, additional information included in Appendix. Published online in Science Express, 5 April, 200

    Stabilization of the p-wave superfluid state in an optical lattice

    Full text link
    It is hard to stabilize the p-wave superfluid state of cold atomic gas in free space due to inelastic collisional losses. We consider the p-wave Feshbach resonance in an optical lattice, and show that it is possible to have a stable p-wave superfluid state where the multi-atom collisional loss is suppressed through the quantum Zeno effect. We derive the effective Hamiltonian for this system, and calculate its phase diagram in a one-dimensional optical lattice. The results show rich phase transitions between the p-wave superfluid state and different types of insulator states induced either by interaction or by dissipation.Comment: 5 pages, 5 figure

    Robust linear dependence of thermal conductance on radial strain in carbon nanotubes

    No full text
    Nanotubes have recently been experimentally demonstrated to be perfect phonon waveguides. To explore the underlying physics, we present atomic scale calculations of thermal transport in carbon nanotubes under radial strain using the nonequilibrium Green’s function method. It is found that the thermal conductance exhibits a robust linear response behavior to radial strain over the whole elastic range. A detailed analysis of phonon transmission reveals that an elastic radial strain can be viewed as a perturbation of the transport of most of the low-frequency phonons. This is attributed to the unique bonding configuration of nanotubes, which can be well preserved even under severe deformation. Such a structural response to deformation, which is rare in other systems, explains the robust thermal transport in nanotubes against severe radial deformation

    Electrical properties of breast cancer cells from impedance measurement of cell suspensions

    Get PDF
    Impedance spectroscopy of biological cells has been used to monitor cell status, e.g. cell proliferation, viability, etc. It is also a fundamental method for the study of the electrical properties of cells which has been utilised for cell identification in investigations of cell behaviour in the presence of an applied electric field, e.g. electroporation. There are two standard methods for impedance measurement on cells. The use of microelectrodes for single cell impedance measurement is one method to realise the measurement, but the variations between individual cells introduce significant measurement errors. Another method to measure electrical properties is by the measurement of cell suspensions, i.e. a group of cells within a culture medium or buffer. This paper presents an investigation of the impedance of normal and cancerous breast cells in suspension using the Maxwell-Wagner mixture theory to analyse the results and extract the electrical parameters of a single cell. The results show that normal and different stages of cancer breast cells can be distinguished by the conductivity presented by each cell. © 2010 IOP Publishing Ltd

    Energy-momentum for Randall-Sundrum models

    Full text link
    We investigate the conservation law of energy-momentum for Randall-Sundrum models by the general displacement transform. The energy-momentum current has a superpotential and are therefore identically conserved. It is shown that for Randall-Sundrum solution, the momentum vanishes and most of the bulk energy is localized near the Planck brane. The energy density is Ï”=Ï”0e−3k∣y∣\epsilon = \epsilon_0 e^{-3k \mid y \mid}.Comment: 13 pages, no figures, v4: introduction and new conclusion added, v5: 11 pages, title changed and references added, accepted by Mod. Phys. Lett.

    Quantum Repeaters with Photon Pair Sources and Multi-Mode Memories

    Get PDF
    We propose a quantum repeater protocol which builds on the well-known DLCZ protocol [L.M. Duan, M.D. Lukin, J.I. Cirac, and P. Zoller, Nature 414, 413 (2001)], but which uses photon pair sources in combination with memories that allow to store a large number of temporal modes. We suggest to realize such multi-mode memories based on the principle of photon echo, using solids doped with rare-earth ions. The use of multi-mode memories promises a speedup in entanglement generation by several orders of magnitude and a significant reduction in stability requirements compared to the DLCZ protocol.Comment: 4 pages, 2 figures, to appear in PRL, accepted versio
    • 

    corecore