152 research outputs found

    Provenance-Centered Dataset of Drug-Drug Interactions

    Get PDF
    Over the years several studies have demonstrated the ability to identify potential drug-drug interactions via data mining from the literature (MEDLINE), electronic health records, public databases (Drugbank), etc. While each one of these approaches is properly statistically validated, they do not take into consideration the overlap between them as one of their decision making variables. In this paper we present LInked Drug-Drug Interactions (LIDDI), a public nanopublication-based RDF dataset with trusty URIs that encompasses some of the most cited prediction methods and sources to provide researchers a resource for leveraging the work of others into their prediction methods. As one of the main issues to overcome the usage of external resources is their mappings between drug names and identifiers used, we also provide the set of mappings we curated to be able to compare the multiple sources we aggregate in our dataset.Comment: In Proceedings of the 14th International Semantic Web Conference (ISWC) 201

    Interoperability and FAIRness through a novel combination of Web technologies

    Get PDF
    Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs

    Semantic Web integration of Cheminformatics resources with the SADI framework

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diversity and the largely independent nature of chemical research efforts over the past half century are, most likely, the major contributors to the current poor state of chemical computational resource and database interoperability. While open software for chemical format interconversion and database entry cross-linking have partially addressed database interoperability, computational resource integration is hindered by the great diversity of software interfaces, languages, access methods, and platforms, among others. This has, in turn, translated into limited reproducibility of computational experiments and the need for application-specific computational workflow construction and semi-automated enactment by human experts, especially where emerging interdisciplinary fields, such as systems chemistry, are pursued. Fortunately, the advent of the Semantic Web, and the very recent introduction of RESTful Semantic Web Services (SWS) may present an opportunity to integrate all of the existing computational and database resources in chemistry into a machine-understandable, unified system that draws on the entirety of the Semantic Web.</p> <p>Results</p> <p>We have created a prototype framework of Semantic Automated Discovery and Integration (SADI) framework SWS that exposes the QSAR descriptor functionality of the Chemistry Development Kit. Since each of these services has formal ontology-defined input and output classes, and each service consumes and produces RDF graphs, clients can automatically reason about the services and available reference information necessary to complete a given overall computational task specified through a simple SPARQL query. We demonstrate this capability by carrying out QSAR analysis backed by a simple formal ontology to determine whether a given molecule is drug-like. Further, we discuss parameter-based control over the execution of SADI SWS. Finally, we demonstrate the value of computational resource envelopment as SADI services through service reuse and ease of integration of computational functionality into formal ontologies.</p> <p>Conclusions</p> <p>The work we present here may trigger a major paradigm shift in the distribution of computational resources in chemistry. We conclude that envelopment of chemical computational resources as SADI SWS facilitates interdisciplinary research by enabling the definition of computational problems in terms of ontologies and formal logical statements instead of cumbersome and application-specific tasks and workflows.</p

    Assaying Rho GTPase–dependent processes in Dictyostelium discoideum

    Get PDF
    The model organism D. discoideum is well-suited to investigate basic questions of molecular and cell biology, particularly those related to the structure, regulation and dynamics of the cytoskeleton, signal transduction, cell-cell adhesion and development. D. discoideum cells make use of Rho-regulated signaling pathways to reorganize the actin cytoskeleton during chemotaxis, endocytosis and cytokinesis. In this organism the Rho family encompasses 20 members, several belonging to the Rac subfamily, but there are no representatives of the Cdc42 and Rho subfamilies. Here we present protocols suitable for monitoring the actin polymerization response and the activation of Rac upon stimulation of aggregation competent cells with the chemoattractant cAMP, and for monitoring the localization and dynamics of Rac activity in live cells

    Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.

    Get PDF
    The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities

    Adding a Little Reality to Building Ontologies for Biology

    Get PDF
    BACKGROUND: Many areas of biology are open to mathematical and computational modelling. The application of discrete, logical formalisms defines the field of biomedical ontologies. Ontologies have been put to many uses in bioinformatics. The most widespread is for description of entities about which data have been collected, allowing integration and analysis across multiple resources. There are now over 60 ontologies in active use, increasingly developed as large, international collaborations. There are, however, many opinions on how ontologies should be authored; that is, what is appropriate for representation. Recently, a common opinion has been the "realist" approach that places restrictions upon the style of modelling considered to be appropriate. METHODOLOGY/PRINCIPAL FINDINGS: Here, we use a number of case studies for describing the results of biological experiments. We investigate the ways in which these could be represented using both realist and non-realist approaches; we consider the limitations and advantages of each of these models. CONCLUSIONS/SIGNIFICANCE: From our analysis, we conclude that while realist principles may enable straight-forward modelling for some topics, there are crucial aspects of science and the phenomena it studies that do not fit into this approach; realism appears to be over-simplistic which, perversely, results in overly complex ontological models. We suggest that it is impossible to avoid compromise in modelling ontology; a clearer understanding of these compromises will better enable appropriate modelling, fulfilling the many needs for discrete mathematical models within computational biology

    Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

    Get PDF
    BACKGROUND: Knowledge of protein domain boundaries is critical for the characterisation and understanding of protein function. The ability to identify domains without the knowledge of the structure – by using sequence information only – is an essential step in many types of protein analyses. In this present study, we demonstrate that the performance of DomainDiscovery is improved significantly by including the inter-domain linker index value for domain identification from sequence-based information. Improved DomainDiscovery uses a Support Vector Machine (SVM) approach and a unique training dataset built on the principle of consensus among experts in defining domains in protein structure. The SVM was trained using a PSSM (Position Specific Scoring Matrix), secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. RESULTS: Improved DomainDiscovery is compared with other methods by benchmarking against a structurally non-redundant dataset and also CASP5 targets. Improved DomainDiscovery achieves 70% accuracy for domain boundary identification in multi-domains proteins. CONCLUSION: Improved DomainDiscovery compares favourably to the performance of other methods and excels in the identification of domain boundaries for multi-domain proteins as a result of introducing support vector machine with benchmark_2 dataset
    • …
    corecore