2,881 research outputs found
Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources
We use an ensemble of satellite (MODIS), aircraft, and ground-based aerosol observations during the ICARTT field campaign over eastern North America in summer 2004 to (1) examine the consistency between different aerosol measurements, (2) evaluate a new retrieval of aerosol optical depths (AODs) and inferred surface aerosol concentrations (PM2.5) from the MODIS satellite instrument, and (3) apply this collective information to improve our understanding of aerosol sources. The GEOS-Chem global chemical transport model (CTM) provides a transfer platform between the different data sets, allowing us to evaluate the consistency between different aerosol parameters observed at different times and locations. We use an improved MODIS AOD retrieval based on locally derived visible surface reflectances and aerosol properties calculated from GEOS-Chem. Use of GEOS-Chem aerosol optical properties in the MODIS retrieval not only results in an improved AOD product but also allows quantitative evaluation of model aerosol mass from the comparison of simulated and observed AODs. The aircraft measurements show narrower aerosol size distributions than those usually assumed in models, and this has important implications for AOD retrievals. Our MODIS AOD retrieval compares well to the ground-based AERONET data (R = 0.84, slope = 1.02), significantly improving on the MODIS c005 operational product. Inference of surface PM2.5 from our MODIS AOD retrieval shows good correlation to the EPA-AQS data (R = 0.78) but a high regression slope (slope = 1.48). The high slope is seen in all AOD-inferred PM2.5 concentrations (AERONET: slope = 2.04; MODIS c005: slope = 1.51) and could reflect a clear-sky bias in the AOD observations. The ensemble of MODIS, aircraft, and surface data are consistent in pointing to a model overestimate of sulfate in the mid-Atlantic and an underestimate of organic and dust aerosol in the southeastern United States. The sulfate overestimate could reflect an excessive contribution from aqueous-phase production in clouds, while the organic carbon underestimate could possibly be resolved by a new secondary pathway involving dicarbonyls
Kinetic approaches to particle acceleration at cosmic ray modified shocks
Kinetic approaches provide an effective description of the process of
particle acceleration at shock fronts and allow to take into account the
dynamical reaction of the accelerated particles as well as the amplification of
the turbulent magnetic field as due to streaming instability. The latter does
in turn affect the maximum achievable momentum and thereby the acceleration
process itself, in a chain of causality which is typical of non-linear systems.
Here we provide a technical description of two of these kinetic approaches and
show that they basically lead to the same conclusions. In particular we discuss
the effects of shock modification on the spectral shape of the accelerated
particles, on the maximum momentum, on the thermodynamic properties of the
background fluid and on the escaping and advected fluxes of accelerated
particles.Comment: 22 pages, 7 figures, accepted for publication in MNRA
The Littlewood-Gowers problem
We show that if A is a subset of Z/pZ (p a prime) of density bounded away
from 0 and 1 then the A(Z/pZ)-norm (that is the l^1-norm of the Fourier
transform) of the characterstic function of A is bounded below by an absolute
constant times (log p)^{1/2 - \epsilon} as p tends to infinity. This improves
on the exponent 1/3 in recent work of Green and Konyagin.Comment: 31 pp. Corrected typos. Updated references
Nonthermal Emission from a Supernova Remnant in a Molecular Cloud
In evolved supernova remnants (SNRs) interacting with molecular clouds, such
as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a
forward shock of moderate Mach number, a cooling layer, a dense radiative shell
and an interior region filled with hot tenuous plasma is expected. We present a
kinetic model of nonthermal electron injection, acceleration and propagation in
that environment and find that these SNRs are efficient electron accelerators
and sources of hard X- and gamma-ray emission. The energy spectrum of the
nonthermal electrons is shaped by the joint action of first and second order
Fermi acceleration in a turbulent plasma with substantial Coulomb losses.
Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal
electrons produce multiwavelength photon spectra in quantitative agreement with
the radio and the hard emission observed by ASCA and EGRET from IC 443. We
distinguish interclump shock wave emission from molecular clump shock wave
emission accounting for a complex structure of molecular cloud. Spatially
resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and
3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST
would distinguish the contribution of the energetic lepton component to the
gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press
Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks
We have calculated the evolution of cosmic ray (CR) modified astrophysical
shocks for a wide range of shock Mach numbers and shock speeds through
numerical simulations of diffusive shock acceleration (DSA) in 1D quasi-
parallel plane shocks. The simulations include thermal leakage injection of
seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion
is assumed. We model shocks similar to those expected around cosmic structure
pancakes as well as other accretion shocks driven by flows with upstream gas
temperatures in the range K and shock Mach numbers spanning
. We show that CR modified shocks evolve to time-asymptotic states
by the time injected particles are accelerated to moderately relativistic
energies (p/mc \gsim 1), and that two shocks with the same Mach number, but
with different shock speeds, evolve qualitatively similarly when the results
are presented in terms of a characteristic diffusion length and diffusion time.
For these models the time asymptotic value for the CR acceleration efficiency
is controlled mainly by shock Mach number. The modeled high Mach number shocks
all evolve towards efficiencies %, regardless of the upstream CR
pressure. On the other hand, the upstream CR pressure increases the overall CR
energy in moderate strength shocks (). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10,
2005
Evidence of a Curved Synchrotron Spectrum in the Supernova Remnant SN 1006
A joint spectral analysis of some Chandra ACIS X-ray data and Molonglo
Observatory Synthesis Telescope radio data was performed for 13 small regions
along the bright northeastern rim of the supernova remnant SN 1006. These data
were fitted with a synchrotron radiation model. The nonthermal electron
spectrum used to compute the photon emission spectra is the traditional
exponentially cut off power law, with one notable difference: The power-law
index is not a constant. It is a linear function of the logarithm of the
momentum. This functional form enables us to show, for the first time, that the
synchrotron spectrum of SN 1006 seems to flatten with increasing energy. The
effective power-law index of the electron spectrum is 2.2 at 1 GeV (i.e., radio
synchrotron-emitting momenta) and 2.0 at about 10 TeV (i.e., X-ray
synchrotron-emitting momenta). This amount of change in the index is
qualitatively consistent with theoretical models of the amount of curvature in
the proton spectrum of the remnant. The evidence of spectral curvature implies
that cosmic rays are dynamically important instead of being "test" particles.
The spectral analysis also provides a means of determining the critical
frequency of the synchrotron spectrum associated with the highest-energy
electrons. The critical frequency seems to vary along the northeastern rim,
with a maximum value of 1.1e17 (0.6e17 - 2.1e17) Hz. This value implies that
the electron diffusion coefficient can be no larger than a factor of ~4.5-21
times the Bohm diffusion coefficient if the velocity of the forward shock is in
the range 2300-5000 km/s. Since the coefficient is close to the Bohm limit,
electrons are accelerated nearly as fast as possible in the regions where the
critical frequency is about 1.0e17 Hz.Comment: 41 pages, 8 figures, accepted by Ap
Effects of fluoxetine on the oral environment of bulimics
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73809/1/j.1399-302X.1993.tb00545.x.pd
- …