90 research outputs found

    A model for prediction of STOVL ejector dynamics

    Get PDF
    A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration

    STOVL propulsion system volume dynamics approximations

    Get PDF
    Two approaches to modeling turbofan engine component volume dynamics are explored and compared with a view toward application to real-time simulation of short take-off vertical landing (STOVL) aircraft propulsion systems. The first (and most popular) approach considers only heat and mass balances; the second approach includes a momentum balance and substitutes the heat equation with a complete energy balance. Results for a practical test case are presented and discussed

    An AD100 implementation of a real-time STOVL aircraft propulsion system

    Get PDF
    A real-time dynamic model of the propulsion system for a Short Take-Off and Vertical Landing (STOVL) aircraft was developed for the AD100 simulation environment. The dynamic model was adapted from a FORTRAN based simulation using the dynamic programming capabilities of the AD100 ADSIM simulation language. The dynamic model includes an aerothermal representation of a turbofan jet engine, actuator and sensor models, and a multivariable control system. The AD100 model was tested for agreement with the FORTRAN model and real-time execution performance. The propulsion system model was also linked to an airframe dynamic model to provide an overall STOVL aircraft simulation for the purposes of integrated flight and propulsion control studies. An evaluation of the AD100 system for use as an aircraft simulation environment is included

    STOVL aircraft simulation for integrated flight and propulsion control research

    Get PDF
    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation

    Real-time simulation of an F110/STOVL turbofan engine

    Get PDF
    A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data

    Transient Ejector Analysis (TEA) code user's guide

    Get PDF
    A FORTRAN computer program for the semi analytic prediction of unsteady thrust augmenting ejector performance has been developed, based on a theoretical analysis for ejectors. That analysis blends classic self-similar turbulent jet descriptions with control-volume mixing region elements. Division of the ejector into an inlet, diffuser, and mixing region allowed flexibility in the modeling of the physics for each region. In particular, the inlet and diffuser analyses are simplified by a quasi-steady-analysis, justified by the assumption that pressure is the forcing function in those regions. Only the mixing region is assumed to be dominated by viscous effects. The present work provides an overview of the code structure, a description of the required input and output data file formats, and the results for a test case. Since there are limitations to the code for applications outside the bounds of the test case, the user should consider TEA as a research code (not as a production code), designed specifically as an implementation of the proposed ejector theory. Program error flags are discussed, and some diagnostic routines are presented

    A system simulation development project: Leveraging resources through partnerships

    Get PDF
    Partnerships between government agencies are an intellectually attractive method of conducting scientific research; the goal is to establish mutually beneficial participant roles for technology exchange that ultimately pays-off in a stronger R&D program for each partner. Anticipated and current aerospace research budgetary pressures through the 90's provide additional impetus for Government research agencies to candidly assess their R&D for those simulation activities no longer unique enough to warrant 'going it alone,' or for those elements where partnerships or teams can offset development costs. This paper describes a specific inter-agency system simulation activity that leverages the development cost of mutually beneficial R&D. While the direct positive influence of partnerships on complex technology developments is our main thesis, we also address on-going teaming issues and hope to impart to the reader the immense indirect (sometimes immeasurable) benefits that meaningful interagency partnerships can produce

    Wearable Sensors for Monitoring the Internal and External Workload of the Athlete

    Get PDF
    The convergence of semiconductor technology, physiology, and predictive health analytics from wearable devices has advanced its clinical and translational utility for sports. The detection and subsequent application of metrics pertinent to and indicative of the physical performance, physiological status, biochemical composition, and mental alertness of the athlete has been shown to reduce the risk of injuries and improve performance and has enabled the development of athlete-centered protocols and treatment plans by team physicians and trainers. Our discussions in this review include commercially available devices, as well as those described in scientific literature to provide an understanding of wearable sensors for sports medicine. The primary objective of this paper is to provide a comprehensive review of the applications of wearable technology for assessing the biomechanical and physiological parameters of the athlete. A secondary objective of this paper is to identify collaborative research opportunities among academic research groups, sports medicine health clinics, and sports team performance programs to further the utility of this technology to assist in the return-to-play for athletes across various sporting domains. A companion paper discusses the use of wearables to monitor the biochemical profile and mental acuity of the athlete

    Wearable Sensors for Monitoring the Physiological and Biochemical Profile of the Athlete

    Get PDF
    Athletes are continually seeking new technologies and therapies to gain a competitive edge to maximize their health and performance. Athletes have gravitated toward the use of wearable sensors to monitor their training and recovery. Wearable technologies currently utilized by sports teams monitor both the internal and external workload of athletes. However, there remains an unmet medical need by the sports community to gain further insight into the internal workload of the athlete to tailor recovery protocols to each athlete. The ability to monitor biomarkers from saliva or sweat in a noninvasive and continuous manner remain the next technological gap for sports medical personnel to tailor hydration and recovery protocols per the athlete. The emergence of flexible and stretchable electronics coupled with the ability to quantify biochemical analytes and physiological parameters have enabled the detection of key markers indicative of performance and stress, as reviewed in this paper

    Screening and brief interventions for hazardous and harmful alcohol use in primary care: a cluster randomised controlled trial protocol

    Get PDF
    A large number of randomised controlled trials in health settings have consistently reported positive effects of brief intervention in terms of reductions in alcohol use. However,although alcohol misuse is common amongst offenders, there is limited evidence of alcohol brief interventions in the criminal justice field. This factorial pragmatic cluster randomised controlledtrial with Offender Managers (OMs) as the unit of randomisation will evaluate the effectiveness and cost-effectiveness of different models of screening to identify hazardous and harmful drinkers in probation and different intensities of brief intervention to reduce excessive drinking in probation clients. Ninety-six OMs from 9 probation areas across 3 English regions (the NorthEast Region (n = 4) and London and the South East Regions (n = 5)) will be recruited. OMs will berandomly allocated to one of three intervention conditions: a client information leaflet control condition (n = 32 OMs); 5-minute simple structured advice (n = 32 OMs) and 20-minute brieflifestyle counselling delivered by an Alcohol Health Worker (n = 32 OMs). Randomisation will be stratified by probation area. To test the relative effectiveness of different screening methods all OMs will be randomised to either the Modified Single Item Screening Questionnaire (M-SASQ) orthe Fast Alcohol Screening Test (FAST). There will be a minimum of 480 clients recruited into the trial. There will be an intention to treat analysis of study outcomes at 6 and 12 months postintervention. Analysis will include client measures (screening result, weekly alcohol consumption,alcohol-related problems, re-offending, public service use and quality of life) and implementation measures from OMs (the extent of screening and brief intervention beyond the minimum recruitment threshold will provide data on acceptability and feasibility of different models of brief intervention). We will also examine the practitioner and organisational factors associated with successful implementation.The trial will evaluate the impact of screening and brief alcohol intervention in routine probation work and therefore its findings will be highly relevant to probation teams and thus the criminal justice system in the UK
    corecore