3 research outputs found

    R2D2 spherical TPC: first energy resolution results

    No full text
    Spherical gaseous time projection chamber detectors, known also as spherical proportional counters, are widely used today for the search of rare phenomena such as weakly interacting massive particles. In principle such a detector exhibits a number of essential features for the search of neutrinoless double beta decay (ββ0ν). A ton scale experiment using a spherical gaseous time projection chamber could cover a region of parameter space relevant for the inverted mass hierarchy in just a few years of data taking. In this context, the first point to be addressed, and the major goal of the R2D2 R&D effort, is the energy resolution. The first results of the prototype, filled with argon at pressures varying from 0.2 to 1.1 bar, yielded an energy resolution as good as 1.1% FWHM for 5.3 MeV α tracks having ranges from 3 to 15 cm. This is a milestone that paves the way for further studies with xenon gas, and the possible use of this technology for ββ0ν searches

    Simultaneous scintillation light and charge readout of a pure argon filled Spherical Proportional Counter

    No full text
    The possible use of a Spherical Proportional Counter for the search of neutrinoless double beta decay is investigated in the R2D2 R&D project. Dual charge and scintillation light readout may improve the detector performance. Tests were carried out with pure argon at 1.1 bar using a 6 × 6 mm2 silicon photomultiplier. Scintillation light was used for the first time to trigger in a spherical proportional counter. The measured drift time is in excellent agreement with the expectations from simulations. Furthermore the light signal emitted during the avalanche development exhibits features that could be exploited for event characterization

    Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment

    No full text
    Abstract We study damping signatures at the Jiangmen Underground Neutrino Observatory (JUNO), a medium-baseline reactor neutrino oscillation experiment. These damping signatures are motivated by various new physics models, including quantum decoherence, nu(3) decay, neutrino absorption, and wave packet decoherence. The phenomenological effects of these models can be characterized by exponential damping factors at the probability level. We assess how well JUNO can constrain these damping parameters and how to disentangle these different damping signatures at JUNO. Compared to current experimental limits, JUNO can significantly improve the limits on tau(3)/m(3) in the nu(3) decay model, the width of the neutrino wave packet sigma(x), and the intrinsic relative dispersion of neutrino momentum sigma(rel)
    corecore