12 research outputs found

    Mentoring Undergraduate Research: The Joys and Surprises of Giving Back

    Get PDF

    Two models of inescapable stress increase tph2 mRNA expression in the anxiety-related dorsomedial part of the dorsal raphe nucleus

    No full text
    Expression of TPH2, the rate-limiting enzyme for brain serotonin synthesis, is elevated in the dorsal raphe nucleus (DR) of depressed suicide victims. One hypothesis is that this increase in TPH2 expression is stress-induced. Here, we used an established animal model to address whether exposure to an acute stressor, inescapable tail shock (IS), increases tph2 mRNA and Tph2 protein expression, and if IS sensitizes the DR to a subsequent, heterotypic stressor. In Experiment 1, we measured tph2 mRNA expression 4 h after IS or home cage (HC) control conditions in male rats, using in situ hybridization histochemistry. In Experiment 2, we measured Tph2 protein expression 12 h or 24 h after IS using western blot. In Experiment 3, we measured tph2 mRNA expression following IS on Day 1, and cold swim stress (10 min, 15 °C) on Day 2. Inescapable tail shock was sufficient to increase tph2 mRNA expression 4 h and 28 h later, selectively in the dorsomedial DR (caudal aspect of the dorsal DR, cDRD; an area just rostral to the caudal DR, DRC) and increased Tph2 protein expression in the DRD (rostral and caudal aspects of the dorsal DR combined) 24 h later. Cold swim increased tph2 mRNA expression in the dorsomedial DR (cDRD) 4 h later. These effects were associated with increased immobility during cold swim, elevated plasma corticosterone, and a proinflammatory plasma cytokine milieu (increased interleukin (IL)-6, decreased IL-10). Our data demonstrate that two models of inescapable stress, IS and cold swim, increase tph2 mRNA expression selectively in the anxiety-related dorsomedial DR (cDRD). Keywords: Anxiety, Dorsal raphe nucleus, Inescapable stress, Inflammation, Tryptophan hydroxylas

    Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits.

    No full text
    The beneficial effects of physical activity (PA) are well documented, yet the mechanisms by which PA prevents disease and improves health outcomes are poorly understood. To identify major gaps in knowledge and potential strategies for catalyzing progress in the field, the NIH convened a workshop in late October 2014 entitled "Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits." Presentations and discussions emphasized the challenges imposed by the integrative and intermittent nature of PA, the tremendous discovery potential of applying "-omics" technologies to understand interorgan crosstalk and biological networking systems during PA, and the need to establish an infrastructure of clinical trial sites with sufficient expertise to incorporate mechanistic outcome measures into adequately sized human PA trials. Identification of the mechanisms that underlie the link between PA and improved health holds extraordinary promise for discovery of novel therapeutic targets and development of personalized exercise medicine
    corecore