12 research outputs found

    Calcium Carbonate Sedimentation in the Global Ocean: Linkages Between the Neritic and Pelagic Environments

    Get PDF
    Other than fluvial sediment, calcium carbonate (CaCO3) is the greatest source of sediment in the present-day ocean. Interest in carbonate sedimentation extends beyond geologists because the carbonate system involves biologic and geochemicalprocesses. Carbonate production, for example, releases CO2 but its accumulation becomes a major sink for inorganic carbon. Unlike fluvial sediments, modern carbonates accumulate more or less equally in the neritic and pelagic environments. Neritic carbonates (benthic) are characterized by rapid production of (mostly) metastable aragonite and magnesian calcite:pelagic production of (primarily) calcite in the open ocean occurs at much slower rates but overmuch larger areas than does neritic production (Table 1). A global understanding of the production, preservation, and accumulation of calcium carbonate thus necessitates understanding both theneritic and pelagic systems, even though communication between researchers in the two subdisciplines often has been minimal

    Benthic Foraminiferal response to sea level change in the mixed siliciclastic-carbonate system of southern Ashmore Trough (Gulf of Papua)

    Get PDF
    Ashmore Trough in the western Gulf of Papua (GoP) represents an outstanding modern example of a tropical mixed siliciclastic-carbonate depositional system where significant masses of both river-borne silicates and bank-derived neritic carbonates accumulate. In this study, we examine how benthic foraminiferal populations within Ashmore Trough vary in response to sea level–driven paleoenvironmental changes, particularly organic matter and sediment supply. Two 11.3-m-long piston cores and a trigger core were collected from the slope of Ashmore Trough and dated using radiocarbon and oxygen isotope measurements of planktic foraminifera. Relative abundances, principal component analyses, and cluster analyses of benthic foraminiferal assemblages in sediment samples identify three distinct assemblages whose proportions changed over time. Assemblage 1, with high abundances of Uvigerina peregrina and Bolivina robusta, dominated between ∼83 and 70 ka (early regression); assemblage 2, with high abundances of Globocassidulina subglobosa, dominated between ∼70 and 11 ka (late regression through lowstand and early transgression); and assemblage 3, with high abundances of neritic benthic species such as Planorbulina mediterranensis, dominated from ∼11 ka to the present (late transgression through early highstand). Assemblage 1 represents heightened organic carbon flux or lowered bottom water oxygen concentration, and corresponds to a time of maximum siliciclastic fluxes to the slope with falling sea level. Assemblage 2 reflects lowered organic carbon flux or elevated bottom water oxygen concentration, and corresponds to an interval of lowered siliciclastic fluxes to the slope due to sediment bypass during sea level lowstand. Assemblage 3 signals increased off-shelf delivery of neritic carbonates, likely when carbonate productivity on the outer shelf (Great Barrier Reef) increased significantly when it was reflooded. Benthic foraminiferal assemblages in the sediment sink (slopes of Ashmore Trough) likely respond to the amount and type of sediment supplied from the proximal source (outer GoP shelf)

    Excess 210Pb inventories and fluxes along the continental slope and basins of the Gulf of Papua

    No full text
    Sediment samples were collected from continental slopes and marginal basins in the Gulf of Papua and analyzed for excess 210Pb to elucidate transport processes of fine-grained particles to this region. Estimated excess 210Pb fluxes of 1.0-12.8 dpm cm-2 a-1 were derived from measured seabed inventories. Highest sediment accumulation rates (0.28-0.35 cm a-) were measured along the northeastern shelf edge, and they decrease in seaward directions and along isobaths to the southwest. The excess 210Pb flux could result from either focused deposition of high-210Pb activity sediments from the continental shelf and upper slope or scavenging of 210Pb brought landward from deep-sea waters. This sediment flux is concentrated in the northeastern Gulf of Papua, where the shelf is narrow and calcium carbonate contents are lowest. Analysis of sedimentary fabric and 210Pb distributions in cores suggests sediment delivery to the slope occurs on a 100-year timescale as both diffuse hemipelagic deposition as well as turbidity flows. The flux of sediment in turbidity flows is not well constrained but may be producing additional deep-sea accumulation in the Moresby Trough, as well as export from the study area

    Assessing palaeobathymetry and sedimentation rates using palynomaceral analysis: A study of modern sediments from the Gulf of Papua, offshore Papua New Guinea

    No full text
    © 2015 © 2015 AASP - The Palynological Society. Palynologists interested in better understanding the sedimentation and energy of depositional environments have often included studies of palynomaceral fragments, particularly when performing palynofacies analyses. Due to the difficult nature of classifying these fragments, researchers have developed numerous, often overlapping, classification schemes. These different schemes make it difficult to compare and contrast between research projects. Determining the appropriate scheme to apply when counting these fragments can be confusing, and application of these schemes can yield inconclusive results, especially when sedimentation and energy are in constant flux. A scheme of five categories, including brown wood (palynomaceral 1-2), leaf cuticle (palynomaceral 3), black debris (palynomaceral 4), structureless organic matter (SOM) and resin, is utilised here. It is applied to the analysis of 64 modern samples from the top 0-4 cm of sediment collected throughout the Gulf of Papua, Papua New Guinea. These samples span a suite of common marine depositional environments: river mouths and deltas, the proximal portion of the continental shelf dominated by a large clinoform, and turbidite and hemipelagic/pelagic deposits on the slope and in the deep ocean basin. Principal component analysis (PCA) confirms this simplified classification scheme provides an indirect means of assessing distance from shore and shelf-slope break, overall water depth and sediment accumulation rate, but other factors, such as processing technique, marine productivity, sediment source, time in transport and residence and bioturbation, are taken into account to fully explain distribution

    Late Pleistocene and Holocene sedimentation, rganic-carbon delivery, and paleoclimatic inferences on the continental slope of the northern Pandora Trough, Gulf of Papua

    No full text
    We investigated sediment and organic-carbon accumulation rates in two jumbo piston cores (MV-54, MV-51) retrieved from the midslope of the northeastern Pandora Trough in the Gulf of Papua, Papua New Guinea. Our data provide a first assessment of mass fluxes over the past ∼33,000 14C years B.P. and variations in organic-carbon sources. Core sediments were analyzed using a suite of physical properties, organic geochemistry, and micropaleontological measurements. MV-54 and MV-51 show two periods of rapid sediment accumulation. The first interval is from ∼15,000 to 20,400 Cal. years B.P. (MV-51: ∼1.09 in ka-1 and ∼81.2 g cm-2 ka-1) and the second occurs at >32,000 14C years B.P. (∼2.70 in ka-1 and ∼244 g cm-2 ka-1). Extremely high accumulation rates (∼3.96 in ka-1; ∼428 g cm-2 ka-1) characterize 15,800-17,700 Cal. years B.P. in MV-54 and likely correspond to early transgression when rivers delivered sediments much closer to the shelf edge. A benthic foraminiferal assemblage in NW-51 from ∼18,400 to 20,400 Cal. years B.P. indicates a seasonally variable flux of organic carbon, possibly resulting from enhanced contrast between monsoon seasons. The oldest sediments, >32,000 14C years B.P., contain TOC fluxes >200 g cm2 ka-1, with >50% of it derived from C3 vascular plant matter. Magnetic susceptibility values are 2 to 3 times higher and benthic foraminiferal accumulation rates are 6 times higher during this interval than at any younger time, indicating a greater influence of detrital minerals and labile organic carbon. The MS data suggest more direct dispersal pathways from central and eastern PNG Rivers to the core site

    Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale

    No full text
    Since Last Glacial Maximum (23-19 ka), Earth climate warming and deglaciation occurred in two major steps (Bølling-Allerød and Preboreal), interrupted by a short cooling interval referred to as the Younger Dryas (12.5-11.5 ka B.P.). In this study, thre

    Deep water geomorphology of the mixed siliciclastic-carbonate system, Gulf of Papua

    No full text
    The Gulf of Papua (GoP) has become a focal point for understanding the deposition an accumulation of siliciclastic and carbonate material along and across a low-latitude continental margin. Although studies have addressed submarine geomorphological features on the inner and middle shelves, as well as processes that may have led to their formation, the seafloor of adjacent slope regions remains poorly documented. This study presents and interprets results from approximately 13,000 line-km of multibeam bathymetry, 9500 line-km of 3.5 kHz seismic, and 122 sediment cores that were collected from the GoP shelf edge and slope, primarily on two cruises (PANASH and PECTEN). Bathymetric maps, in conjunction with the seismic profiles and cores, were used to make extensive observations, descriptions, and interpretations of seafloor geomorphology and begin to address several key issues regarding the delivery and accumulation of sediment. This study divided the GoP slope region into physiographic regions including intraslope basins: Ashmore Trough, southern Pandora Trough, northern Pandora Trough, Moresby Trough and intraslope plateaus/platfbrms: carbonate platforms and atolls and Eastern Plateau. Ashmore Trough contains a very linear northern margin capped by a drowned barrier reef system. This shelf edge is also defined by a broad promontory with channels extending from its apex, interpreted as a relict shelf-edge delta. Southern Pandora Trough is characterized by pervasive slope channels and slump scars extending down slope to a thick depocenter and an extensive mass-transport complex. In contrast, northern Pandora Trough has few visible slope channels. Seismic observations reveal a wedge of sediment extending down slope from northern Pandora Trough shelf edge and filling preexisting bathymetry. Large fold-and-thrust-belt ridges are also present on the seafloor in this region and may act to divert, and/or catch sediment, depending on sediment transport direction. Moresby Trough contains a large axial submarine channel that extends almost the entire length of the intraslope basin. In addition, an extensive system of canyons lines the NE margin of Moresby Trough. Mass-trmsport deposits have been fed from the canyons and in one case deposited a large (∼2000 km2) mass-trmsport complex. Fold-and-thrust-belt ridges also extend into Moresby Trough. Here they trend perpendicular to slope and catch gravity flow deposits on their updip side. GoP carbonate platforms/atolls all display very pronounced scalloped-margin morphology, which may indicate pervasive mass-wasting processes on carbonate margins. Northwest Eastern Plateau is dominantly carbonate and displays the characteristic scalloped margin morphology; however, most of the plateau is characterized by parallel seismic reflectors. These seismic observations in conjunction with core data indicate that accumulation on Eastern Plateau is primarily mixed pelagic and hemipelagic sediment. Observations and interpretations of the bathymetry have revealed the deep water GoP to contain very diverse geomorphology and suggest it is a dynamic system influenced by a variety of sediment transport processes, particularly mass wasting and other gravity flow processes

    Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale

    Get PDF
    International audienceSince Last Glacial Maximum (23-19 ka), Earth climate warming and deglaciation occurred in two major steps (Bolling-Allerod and Preboreal), interrupted by a short cooling interval referred to as the Younger Dryas (12.5-11.5 ka B. P.). In this study, three cores (MV-33, MV-66, and MD-40) collected in the central part of Pandora Trough (Gulf of Papua) have been analyzed, and they reveal a detailed sedimentary pattern at millennial timescale. Siliciclastic turbidites disappeared during the Bolling-Allerod and Preboreal intervals to systematically reoccur during the Younger Dryas interval. Subsequent to the final disappearance of the siliciclastic turbidites a calciturbidite occurred during meltwater pulse 1B. The Holocene interval was characterized by a lack of siliciclastic turbidites, relatively high carbonate content, and fine bank-derived aragonitic sediment. The observed millennial timescale sedimentary variability can be explained by sea level fluctuations. During the Last Glacial Maximum, siliciclastic turbidites were numerous when the lowstand coastal system was located along the modern shelf edge. Although they did not occur during the intervals of maximum flooding of the shelf (during meltwater pulses 1A and 1B), siliciclastic turbidites reappear briefly during the Younger Dryas, an interval when sea level rise slowed, stopped, or perhaps even fell. The timing of the calciturbidite coincides with the first reflooding of Eastern Fields Reef, an atoll that remained exposed for most of the glacial stages

    Deep water geomorphology of the mixed siliciclastic-carbonate system, Gulf of Papua

    Get PDF
    The Gulf of Papua (GoP) has become a focal point for understanding the deposition and accumulation of siliciclastic and carbonate material along and across a low-latitude continental margin. Although studies have addressed submarine geomorphological features on the inner and middle shelves, as well as processes that may have led to their formation, the seafloor of adjacent slope regions remains poorly documented. This study presents and interprets results from approximately 13,000 line-km of multibeam bathymetry, 9500 line-km of 3.5 kHz seismic, and 122 sediment cores that were collected from the GoP shelf edge and slope, primarily on two cruises (PANASH and PECTEN). Bathymetric maps, in conjunction with the seismic profiles and cores, were used to make extensive observations, descriptions, and interpretations of seafloor geomorphology and begin to address several key issues regarding the delivery and accumulation of sediment. This study divided the GoP slope region into physiographic regions including intraslope basins: Ashmore Trough, southern Pandora Trough, northern Pandora Trough, Moresby Trough and intraslope plateaus/platforms: carbonate platforms and atolls and Eastern Plateau. Ashmore Trough contains a very linear northern margin capped by a drowned barrier reef system. This shelf edge is also defined by a broad promontory with channels extending from its apex, interpreted as a relict shelf-edge delta. Southern Pandora Trough is characterized by pervasive slope channels and slump scars extending down slope to a thick depocenter and an extensive mass-transport complex. In contrast, northern Pandora Trough has few visible slope channels. Seismic observations reveal a wedge of sediment extending down slope from northern Pandora Trough shelf edge and filling preexisting bathymetry. Large fold-and-thrust-belt ridges are also present on the seafloor in this region and may act to divert and/or catch sediment, depending on sediment transport direction. Moresby Trough contains a large axial submarine channel that extends almost the entire length of the intraslope basin. In addition, an extensive system of canyons lines the NE margin of Moresby Trough. Mass-transport deposits have been fed from the canyons and in one case deposited a large (similar to 2000 km(2)) mass-transport complex. Fold-and-thrust-belt ridges also extend into Moresby Trough. Here they trend perpendicular to slope and catch gravity flow deposits on their updip side. GoP carbonate platforms/atolls all display very pronounced scalloped-margin morphology, which may indicate pervasive mass-wasting processes on carbonate margins. Northwest Eastern Plateau is dominantly carbonate and displays the characteristic scalloped margin morphology; however, most of the plateau is characterized by parallel seismic reflectors. These seismic observations in conjunction with core data indicate that accumulation on Eastern Plateau is primarily mixed pelagic and hemipelagic sediment. Observations and interpretations of the bathymetry have revealed the deep water GoP to contain very diverse geomorphology and suggest it is a dynamic system influenced by a variety of sediment transport processes, particularly mass wasting and other gravity flow processes

    Neogene evolution of the mixed carbonate-siliciclastic system in the Gulf of Papua, Papua New Guinea

    No full text
    This paper outlines the evolution of the late Cenozoic mixed carbonate-siliciclastic depositional system in the Gulf of Papua (GoP), using seismic, gravity, multibeam bathymetry, well data sets, and Landsat imagery. The deposition of the mixed sedimentary sequences was influenced by dynamic interplay of tectonics, eustasy, in situ carbonate production, and siliciclastic sediment supply. The roles of these major factors are estimated during different periods of the GoP margin evolution. The Cenozoic mixed system in the GoP formed in distinct phases. The first phase (Late Cretaceous-Paleocene) was mostly driven by tectonics. Rifting created grabens and uplifted structural blocks which served later as pedestals for carbonate edifices. Active neritic carbonate accumulation characterized the second phase (Eocene-middle Miocene). During this phase, mostly eustatic fluctuations controlled the large-scale sedimentary geometries of the carbonate system. The third phase (late Miocene-early Pliocene) was characterized by extensive demise of the carbonate platforms in the central part of the study area, which can be triggered by one or combination of several factors, such as eustatic sea level fluctuations, increased tectonic subsidence, uplift, sudden influx of siliciclastics, or dramatic changes in environmental conditions and climate. The fourth phase (late Pliocene-Holocene) was dominated by siliciclastics, which resulted in the burial of drowned and/ or active carbonate platforms, although some platforms still remain alive until present-day
    corecore