725 research outputs found

    Response to "Comment on 'Carrier recombination near threading dislocations in GaN epilayers by low voltage cathodoluminescence'" [Appl. Phys. Lett. 97, 166101 (2010)]

    Get PDF
    Abstract : The authors are aware that there are number of theoretical models available to simulate cathodoluminescence (CL) contrast as a function of the distance, r, from a nonradiative defect. In our letter1 a simple expression, C(r)=C0 exp(−r/L)C(r)=C0 exp(−r/L), was chosen to compare the diffusion length, L, from GaN samples with different n-doping levels over a range of low electron beam energies. This approach is widely used in other studies of CL dislocation contrast as pointed out in the comment on the letter and it was found to provide an acceptable fit to the experimental CL contrast data

    Carrier transport properties in the vicinity of single seld-assembled quantum dots determined by low-voltage cathodoluminescence imaging

    Get PDF
    Abstract : We propose a method to investigate the carrier transport properties in the ultrathin wetting layer of a self-assembled quantum dot (QD) structure using low-voltage cathodoluminescence (CL) imaging. Measurements are performed on diluted InAs/InP QDs in order to spatially resolve them on CL images at temperature ranging from 5 to 300 K. The mean ambipolar diffusion length extracted from CL intensity profiles across different isolated bright spots is about 300 nm at 300 K. This gives an ambipolar carrier mobility of about 110 cm2/(V s)110 cm2/(V s). Temperature investigation reveals a maximum diffusion length near 120 K

    Exploring vertical and horizontal leadership in projects: A comparison of Indian and Australian contexts

    Full text link
    Project-based organisational forms are becoming more and more prevalent in many industries, and leadership influences projects' success ultimately impacting the organisational performance. Two types of leadership styles have been explored: vertical and horizontal. This study aims to identify the nature and balance of vertical and horizontal leadership in projects to allow project managers to consciously poly these approaches in different situations. A case study-based approach is adopted wherein, two case studies from India and three case studies from Australia are included . A comparative study of leadership styles is performed to find the best contextual fit for leadership styles. The findings reveal that that national cultural is not a major factor in influencing project leadership. Rather, organisational culture and a shared understanding on leadership practices is what influences whether vertical or horizontal leadership will be more prevalent. Senior leaders' initiatives to create and support a culture of sharing ideasand decisions, backed by project manager's approach enable effective balance between horizontal and vertical leadership. Horizontal leadership is further by regular meetings and social interactions. Prevalence of horizontal leaderships is demonstrated in technical decisions, as team members have the best expertise to address technical issues. In contrast, strategic decisions are normally discussed with the project manager and often escalated to senior leaders for decisions

    Multispectrum Analysis of the Oxygen A-band

    Get PDF
    Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure 02 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database

    Raman study of As outgassing and damage induced by ion implantation in Zn-doped GaAs

    Get PDF
    Abstract : Room temperature micro-Raman investigations of LO phonon and LO phonon-plasmon coupling is used to study the AsAs outgassing mechanism and the disordering effects induced by ion implantation in ZnZn-doped GaAsGaAs with nominal doping level p=7×1018cm−3p=7×1018cm−3. The relative intensity of these two peaks is measured right after rapid vacuum thermal annealings (RVTA) between 200 and 450°C450°C, or after ion implantations carried out at energies of 40keV40keV with P+P+, and at 90 and 170keV170keV with As+As+. These intensities provide information regarding the Schottky barrier formation near the sample surface. Namely, the Raman signature of the depletion layer formation resulting from AsAs desorption is clearly observed in samples submitted to RVTA above 300°C300°C, and the depletion layer depths measured in ion implanted GaAs:ZnGaAs:Zn are consistent with the damage profiles obtained through Monte Carlo simulations. Ion channeling effects, maximized for a tilt angle set to 45°45° during implantation, are also investigated. These results show that the Raman spectroscopy is a versatile tool to study the defects induced by postgrowth processes in multilayered heterostructures, with probing range of about 100nm100nm in GaAsGaAs-based materials

    Influence of the substrate-induced strain and irradiation disorder on the Peierls transition in TTF-TCNQ microdomains

    Full text link
    The influence of the combined effects of substrate-induced strain, finite size and electron irradiation-induced defects have been studied on individual micron-sized domains of the organic charge transfer compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) by temperature-dependent conductivity and current-voltage measurements. The individual domains have been isolated by focused ion beam etching and electrically contacted by focused ion and electron beam induced deposition of metallic contacts. The temperature-dependent conductivity follows a variable range hopping behavior which shows a crossover of the exponent as the Peierls transition is approached. The low temperature behavior is analyzed within the segmented rod model of Fogler, Teber and Shklowskii, as originally developed for a charge-ordered quasi one-dimensional electron crystal. The results are compared with data obtained on as-grown and electron irradiated epitaxial TTF-TCNQ thin films of the two-domain type

    Post-eruptive volcano inflation following major magma drainage: Interplay between models of viscoelastic response influence and models of magma inflow at Bárðarbunga caldera, Iceland, 2015-2018

    Get PDF
    &amp;lt;p&amp;gt;Unrest at B&amp;amp;#225;r&amp;amp;#240;arbunga after a caldera collapse in 2014-2015 includes elevated seismicity beginning about six months after the eruption ended, including nine Mw&amp;gt;4.5 earthquakes. The earthquakes occurred mostly on the northern and southern parts of a caldera ring fault. Global Navigation Satellite System (GNSS, in particular, Global Positioning System; GPS) and Interferometric Synthetic Aperture Radar (InSAR) geodesy are applied to evaluate the spatial and temporal pattern of ground deformation around B&amp;amp;#225;r&amp;amp;#240;arbunga caldera outside the icecap, in 2015-2018, when deformation rates were relatively steady. The aim is to study the role of viscoelastic relaxation following major magma drainage versus renewed magma inflow as an explanation for the ongoing unrest.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;The largest horizontal velocity is measured at GPS station KISA (3 km from caldera rim), 141 mm/yr in direction N47&amp;lt;sup&amp;gt;o&amp;lt;/sup&amp;gt;E relative to the Eurasian plate in 2015-2018. GPS and InSAR observations show that the velocities decay rapidly outward from the caldera. We correct our observations for Glacial Isostatic Adjustment and plate spreading to extract the deformation related to volcanic activity. After this correction, some GPS sites show subsidence.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;We use a reference Earth model to initially evaluate the contribution of viscoelastic processes to the observed deformation field. We model the deformation within a half-space composed of a 7-km thick elastic layer on top of a viscoelastic layer with a viscosity of 5 x 10&amp;lt;sup&amp;gt;18&amp;lt;/sup&amp;gt; Pa s, considering two co-eruptive contributors to the viscoelastic relaxation: &amp;amp;#8220;non-piston&amp;amp;#8221; magma withdrawal at 10 km depth (modelled as pressure drop in a spherical source) and caldera collapse (modelled as surface unloading). The other model we test is the magma inflow in an elastic half-space. Both the viscoelastic relaxation and magma inflow create horizontal outward movements around the caldera, and uplift at the surface projection of the source center in 2015-2018. Viscoelastic response due to magma withdrawal results in subsidence in the area outside the icecap. Magma inflow creates rapid surface velocity decay as observed.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;We explore further two parameters in the viscoelastic reference model: the viscosity and the &amp;quot;non-piston&amp;quot; magma withdrawal volume. Our comparison between the corrected InSAR velocities and viscoelastic models suggests a viscosity of 2.6&amp;amp;#215;10&amp;lt;sup&amp;gt;18&amp;lt;/sup&amp;gt; Pa s and 0.36 km&amp;lt;sup&amp;gt;3&amp;lt;/sup&amp;gt; of &amp;amp;#8220;non-piston&amp;amp;#8221; magma withdrawal volume, given by the optimal reduced Chi-squared statistic. When the deformation is explained using only magma inflow into a single spherical source (and no viscoelastic response), the optimal model suggests an inflow rate at 1&amp;amp;#215;10&amp;lt;sup&amp;gt;7&amp;lt;/sup&amp;gt; m&amp;lt;sup&amp;gt;3&amp;lt;/sup&amp;gt;/yr at 700 m depth. A magma inflow model with more model parameters is also a possible explanation, including sill inflation at 10 km together with slip on caldera ring faults. Our reference Earth model and the two end-member models suggest that there is a trade-off between the viscoelastic relaxation and the magma inflow, since they produce similar deformation signals outside the icecap. However, to reproduce details of the observed deformation, both processes are required. A viscoelastic-only model cannot fully explain the fast velocity decay away from the caldera, whereas a magma inflow-only model cannot explain the subsidence observed at several locations.&amp;lt;/p&amp;gt; </jats:p

    UV laser controlled quantum well intermixing in InAlGaAs/GaAs heterostructures

    Get PDF
    Abstract : The influence of surface irradiation of GaAs with a KrF excimer laser on the magnitude of the quantum well intermixing (QWI) effect has been investigated on GaAs/AlGaAs and GaAs/AlGaAs/InAlGaAs QWs heterostructures. The selective area irradiation through a SiOx mask was carried out in an atmospheric environment. Following the 1000 pulses irradiation at 100 mJ/cm2, the samples were annealed in a rapid thermal annealing furnace at 900 °C. Photoluminescence mapping and cathodoluminescence measurements show that significant laser-induced suppression of the QWI process can be achieved with lateral resolution of the order of 1μm

    Fabrication of p-type porous GaN on silicon and epitaxial GaN

    Get PDF
    Abstract : Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurements confirm a p-n junction commensurate with a doping density of 1018 cm 3. Photoluminescence and cathodoluminescence confirm emission from Mg-acceptors in porous p-type GaN
    corecore