21 research outputs found

    Data from: Balancing selection for aflatoxin in Aspergillus flavus is maintained through interference competition with, and fungivory by insects

    No full text
    The role of microbial secondary metabolites in the ecology of the organisms that produce them remains poorly understood. Variation in aflatoxin production by Aspergillus flavus is maintained by balancing selection, but the ecological function and impact on fungal fitness of this compound are unknown. We hypothesize that balancing selection for aflatoxin production in A. flavus is driven by interaction with insects. To test this, we competed naturally occurring aflatoxigenic and non-aflatoxigenic fungal isolates against Drosophila larvae on medium containing 0–1750 ppb aflatoxin, using quantitative PCR to quantify A. flavus DNA as a proxy for fungal fitness. The addition of aflatoxin across this range resulted in a 26-fold increase in fungal fitness. With no added toxin, aflatoxigenic isolates caused higher mortality of Drosophila larvae and had slightly higher fitness than non-aflatoxigenic isolates. Additionally, aflatoxin production increased an average of 1.5-fold in the presence of a single larva and nearly threefold when the fungus was mechanically damaged. We argue that the role of aflatoxin in protection from fungivory is inextricably linked to its role in interference competition. Our results, to our knowledge, provide the first clear evidence of a fitness advantage conferred to A. flavus by aflatoxin when interacting with insects

    Fitness Cost of Aflatoxin Production in Aspergillus flavus When Competing with Soil Microbes Could Maintain Balancing Selection

    No full text
    Aflatoxin, produced by the fungus Aspergillus flavus, is an extremely potent hepatotoxin that causes acute toxicosis and cancer, and it incurs hundreds of millions of dollars annually in agricultural losses. Despite the importance of this toxin to humans, it has remained unclear what the fungus gains by producing aflatoxin. In fact, not all strains of A. flavus produce aflatoxin. Previous work has shown an advantage to producing aflatoxin in the presence of some insects. Our current work demonstrates the first evidence of a disadvantage to A. flavus in producing aflatoxin when competing with soil microbes. Together, these opposing evolutionary forces could explain the persistence of both aflatoxigenic and nonaflatoxigenic strains through evolutionary time.Selective forces that maintain the polymorphism for aflatoxigenic and nonaflatoxigenic individuals of Aspergillus flavus are largely unknown. As soils are widely considered the natural habitat of A. flavus, we hypothesized that aflatoxin production would confer a fitness advantage in the soil environment. To test this hypothesis, we used A. flavus DNA quantified by quantitative PCR (qPCR) as a proxy for fitness of aflatoxigenic and nonaflatoxigenic field isolates grown in soil microcosms. Contrary to predictions, aflatoxigenic isolates had significantly lower fitness than did nonaflatoxigenic isolates in natural soils across three temperatures (25, 37, and 42°C). The addition of aflatoxin to soils (500 ng/g) had no effect on the growth of A. flavus. Amplicon sequencing showed that neither the aflatoxin-producing ability of the fungus nor the addition of aflatoxin had a significant effect on the composition of fungal or bacterial communities in soil. We argue that the fitness disadvantage of aflatoxigenic isolates is most likely explained by the metabolic cost of producing aflatoxin. Coupled with a previous report of a selective advantage of aflatoxin production in the presence of some insects, our findings give an ecological explanation for balancing selection resulting in persistent polymorphisms in aflatoxin production

    Aneuploidy Formation in the Filamentous Fungus Aspergillus flavus in Response to Azole Stress

    No full text
    ABSTRACT Aspergillus flavus is a mycotoxigenic fungus that contaminates many important agricultural crops with aflatoxin B1, the most toxic and carcinogenic natural compound. This fungus is also the second leading cause of human invasive aspergillosis, after Aspergillus fumigatus, a disease that is particularly prevalent in immunocompromised individuals. Azole drugs are considered the most effective compounds in controlling Aspergillus infections both in clinical and agricultural settings. Emergence of azole resistance in Aspergillus spp. is typically associated with point mutations in cyp51 orthologs that encode lanosterol 14α-demethylase, a component of the ergosterol biosynthesis pathway that is also the target of azoles. We hypothesized that alternative molecular mechanisms are also responsible for acquisition of azole resistance in filamentous fungi. We found that an aflatoxin-producing A. flavus strain adapted to voriconazole exposure at levels above the MIC through whole or segmental aneuploidy of specific chromosomes. We confirm a complete duplication of chromosome 8 in two sequentially isolated clones and a segmental duplication of chromosome 3 in another clone, emphasizing the potential diversity of aneuploidy-mediated resistance mechanisms. The plasticity of aneuploidy-mediated resistance was evidenced by the ability of voriconazole-resistant clones to revert to their original level of azole susceptibility following repeated transfers on drug-free media. This study provides new insights into mechanisms of azole resistance in a filamentous fungus. IMPORTANCE Fungal pathogens cause human disease and threaten global food security by contaminating crops with toxins (mycotoxins). Aspergillus flavus is an opportunistic mycotoxigenic fungus that causes invasive and noninvasive aspergillosis, diseases with high rates of mortality in immunocompromised individuals. Additionally, this fungus contaminates most major crops with the notorious carcinogen, aflatoxin. Voriconazole is the drug of choice to treat infections caused by Aspergillus spp. Although azole resistance mechanisms have been well characterized in clinical isolates of Aspergillus fumigatus, the molecular basis of azole resistance in A. flavus remains unclear. Whole-genome sequencing of eight voriconazole-resistant isolates revealed that, among other factors, A. flavus adapts to high concentrations of voriconazole by duplication of specific chromosomes (i.e., aneuploidy). Our discovery of aneuploidy-mediated resistance in a filamentous fungus represents a paradigm shift, as this type of resistance was previously thought to occur only in yeasts. This observation provides the first experimental evidence of aneuploidy-mediated azole resistance in the filamentous fungus A. flavus

    The Frequency of Sex: Population Genomics Reveals Differences in Recombination and Population Structure of the Aflatoxin-Producing Fungus Aspergillus flavus

    No full text
    Differences in the relative frequencies of sexual and asexual reproduction have profound implications for the accumulation of deleterious mutations (Muller’s ratchet), but little is known about how these differences impact the evolution of ecologically important phenotypes. Aspergillus flavus is the main producer of aflatoxin, a notoriously potent carcinogen that often contaminates food. We investigated if differences in the levels of production of aflatoxin by A. flavus could be explained by the accumulation of deleterious mutations due to a lack of recombination. Despite differences in the extent of recombination, variation in aflatoxin production is better explained by the demography and history of specific populations and may suggest important differences in the ecological roles of aflatoxin among populations. Furthermore, the association of aflatoxin production and populations provides a means of predicting the risk of aflatoxin contamination by determining the frequencies of isolates from low- and high-production populations.The apparent rarity of sex in many fungal species has raised questions about how much sex is needed to purge deleterious mutations and how differences in frequency of sex impact fungal evolution. We sought to determine how differences in the extent of recombination between populations of Aspergillus flavus impact the evolution of genes associated with the synthesis of aflatoxin, a notoriously potent carcinogen. We sequenced the genomes of, and quantified aflatoxin production in, 94 isolates of A. flavus sampled from seven states in eastern and central latitudinal transects of the United States. The overall population is subdivided into three genetically differentiated populations (A, B, and C) that differ greatly in their extent of recombination, diversity, and aflatoxin-producing ability. Estimates of the number of recombination events and linkage disequilibrium decay suggest relatively frequent sex only in population A. Population B is sympatric with population A but produces significantly less aflatoxin and is the only population where the inability of nonaflatoxigenic isolates to produce aflatoxin was explained by multiple gene deletions. Population expansion evident in population B suggests a recent introduction or range expansion. Population C is largely nonaflatoxigenic and restricted mainly to northern sampling locations through restricted migration and/or selection. Despite differences in the number and type of mutations in the aflatoxin gene cluster, codon optimization and site frequency differences in synonymous and nonsynonymous mutations suggest that low levels of recombination in some A. flavus populations are sufficient to purge deleterious mutations

    The Frequency of Sex: Population Genomics Reveals Differences in Recombination and Population Structure of the Aflatoxin-Producing Fungus Aspergillus flavus.

    No full text
    The apparent rarity of sex in many fungal species has raised questions about how much sex is needed to purge deleterious mutations and how differences in frequency of sex impact fungal evolution. We sought to determine how differences in the extent of recombination between populations of Aspergillus flavus impact the evolution of genes associated with the synthesis of aflatoxin, a notoriously potent carcinogen. We sequenced the genomes of, and quantified aflatoxin production in, 94 isolates of A. flavus sampled from seven states in eastern and central latitudinal transects of the United States. The overall population is subdivided into three genetically differentiated populations (A, B, and C) that differ greatly in their extent of recombination, diversity, and aflatoxin-producing ability. Estimates of the number of recombination events and linkage disequilibrium decay suggest relatively frequent sex only in population A. Population B is sympatric with population A but produces significantly less aflatoxin and is the only population where the inability of nonaflatoxigenic isolates to produce aflatoxin was explained by multiple gene deletions. Population expansion evident in population B suggests a recent introduction or range expansion. Population C is largely nonaflatoxigenic and restricted mainly to northern sampling locations through restricted migration and/or selection. Despite differences in the number and type of mutations in the aflatoxin gene cluster, codon optimization and site frequency differences in synonymous and nonsynonymous mutations suggest that low levels of recombination in some A. flavus populations are sufficient to purge deleterious mutations.IMPORTANCE Differences in the relative frequencies of sexual and asexual reproduction have profound implications for the accumulation of deleterious mutations (Muller's ratchet), but little is known about how these differences impact the evolution of ecologically important phenotypes. Aspergillus flavus is the main producer of aflatoxin, a notoriously potent carcinogen that often contaminates food. We investigated if differences in the levels of production of aflatoxin by A. flavus could be explained by the accumulation of deleterious mutations due to a lack of recombination. Despite differences in the extent of recombination, variation in aflatoxin production is better explained by the demography and history of specific populations and may suggest important differences in the ecological roles of aflatoxin among populations. Furthermore, the association of aflatoxin production and populations provides a means of predicting the risk of aflatoxin contamination by determining the frequencies of isolates from low- and high-production populations

    Supplemental Materials from Balancing selection for aflatoxin in <i>Aspergillus flavus</i> is maintained through interference competition with and fungivory by insects

    No full text
    The role of microbial secondary metabolites in the ecology of the organisms that produce them remains poorly understood. Variation in aflatoxin production by <i>Aspergillus flavus</i> is maintained by balancing selection, but the ecological function and impact on fungal fitness of this compound are unknown. We hypothesize that balancing selection for aflatoxin production in <i>A. flavus</i> is driven by interaction with insects. To test this, we competed naturally occurring aflatoxigenic and non-aflatoxigenic fungal isolates against <i>Drosophila</i> larvae on medium containing 0–2000 ppb aflatoxin, using quantitative PCR to quantify <i>A. flavus</i> DNA as a proxy for fungal fitness. The addition of aflatoxin across this range resulted in a 26-fold increase in fungal fitness. With no added toxin, aflatoxigenic isolates caused higher mortality of <i>Drosophila</i> larvae and had slightly higher fitness than non-aflatoxigenic isolates. Additionally, aflatoxin production increased an average of 1.5-fold in the presence of a single larva and nearly threefold when the fungus was mechanically damaged. We argue that the role of aflatoxin in protection from fungivory is inextricably linked to its role in interference competition. Our results provide the first clear evidence of a fitness advantage conferred to <i>A. flavus</i> by aflatoxin when interacting with insects

    LaeA-Regulated Fungal Traits Mediate Bacterial Community Assembly

    No full text
    ABSTRACT Potent antimicrobial metabolites are produced by filamentous fungi in pure culture, but their ecological functions in nature are often unknown. Using an antibacterial Penicillium isolate and a cheese rind microbial community, we demonstrate that a fungal specialized metabolite can regulate the diversity of bacterial communities. Inactivation of the global regulator, LaeA, resulted in the loss of antibacterial activity in the Penicillium isolate. Cheese rind bacterial communities assembled with the laeA deletion strain had significantly higher bacterial abundances than the wild-type strain. RNA-sequencing and metabolite profiling demonstrated a striking reduction in the expression and production of the natural product pseurotin in the laeA deletion strain. Inactivation of a core gene in the pseurotin biosynthetic cluster restored bacterial community composition, confirming the role of pseurotins in mediating bacterial community assembly. Our discovery demonstrates how global regulators of fungal transcription can control the assembly of bacterial communities and highlights an ecological role for a widespread class of fungal specialized metabolites. IMPORTANCE Cheese rinds are economically important microbial communities where fungi can impact food quality and aesthetics. The specific mechanisms by which fungi can regulate bacterial community assembly in cheeses, other fermented foods, and microbiomes in general are largely unknown. Our study highlights how specialized metabolites secreted by a Penicillium species can mediate cheese rind development via differential inhibition of bacterial community members. Because LaeA regulates specialized metabolites and other ecologically relevant traits in a wide range of filamentous fungi, this global regulator may have similar impacts in other fungus-dominated microbiomes

    Inadvertent Selection of a Pathogenic Fungus Highlights Areas of Concern in Human Clinical Practices

    No full text
    In studying the development of tolerance to common hospital cleaners (Oxivir&reg; and CaviCide&trade;) in clinical isolate stocks of the emerging, multidrug-resistant yeast pathogen Candida auris, we selected for a cleaner-tolerant subpopulation of a more common nosocomial pathogen, Candida glabrata. Through the purification of each species and subsequent competition and other analyses, we determined that C. glabrata is capable of readily dominating mixed populations of C. auris and C. glabrata when exposed to hospital cleaners. This result suggests that exposure to antimicrobial compounds can preferentially select for low-level, stress-tolerant fungal pathogens. These findings indicate that clinical disinfection practices could contribute to the selection of tolerant, pathogenic microbes that persist within healthcare settings
    corecore