17 research outputs found

    Climate-change impacts and adaptation for Pakistan’s irrigated agriculture

    Get PDF
    Pakistan is one of the most vulnerable counties in terms climate-change impacts on its agricultural productivity. Agriculture is not only the largest sector in Pakistan’s economy, the food security of its over 220 million inhabitants also strongly depends on its production. As Pakistan’s arid croplands are extensively irrigated, agricultural productivity is affected by increasing temperatures (projected to increase up to 6°C between 2000 and 2100 under a limited climate-change mitigation scenario), changes in water availability (i.e. river streamflow and groundwater resources) and atmospheric carbon dioxide concentrations ([CO2]; affecting both crop productivity and water use efficiency). Here we present the impacts of climate change on Pakistan’s primary cereal crops: wheat and rice. Impacts are quantified by combining several climate-change scenarios with a process-based coupled hydrological-crop model, VIC-WOFOST. VIC-WOFOST comprehensively estimates changes in crop growth, water resources and their interactions under climate change. Moreover, the role of elevated [CO2] on agricultural productivity and sustainable water use is specifically assessed. We then explore the possibilities and limitations of agricultural adaptation to enable sustainable food security for Pakistan under various climate-change and population growth scenarios. Our results show that climate-change will severely affect Pakistan’s agriculture, especially due increased temperatures and crop heat stress. However, climate-change adaptation can potentially mitigate some of these effects, especially for wheat production. Moreover, with sufficient agricultural adaptation, climate-change can even be beneficial for Pakistan’s agriculture due to the benefits of elevated [CO2]. While our study is focussed on Pakistan, it indicates pathways for sustainable food production under climate change that may also be important for other regions that strongly depend on irrigated agriculture

    Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics

    Get PDF
    Chinese lakes, including ponds and reservoirs, are increasingly threatened by algal blooms. Yet, each lake is unique, leading to large inter-lake variation in lake vulnerability to algal blooms. Here, we aim to assess the effects of unique lake characteristics on lake vulnerability to algal blooms. To this end, we built a novel and comprehensive database of lake morphometric, climate and sediment characteristics of 19,536 Chinese lakes, including ponds and reservoirs (>0.1 km2). We assessed lake characteristics for nine stratification classes and show that lakes, including ponds and reservoirs, in eastern China typically have a warm stratification class (Tavg>4 °C) and are slightly deeper than those in western China. Model results for representative lakes suggest that the most vulnerable lakes to algal blooms are in eastern China where pollution levels are also highest. Our characterization provides an important baseline to inform policymakers in what regions lakes are potentially most vulnerable to algal blooms

    Attribution of global lake systems change to anthropogenic forcing

    Get PDF
    Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide

    A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector

    Get PDF
    Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.Peer reviewe

    Modelling agricultural production under sustainable water management, climate change and agricultural adaptation

    No full text

    Data underlying the article Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics

    No full text
    In this study, we used data for analysis, data for validation, models and R-scripts

    World Water Map Data Package

    No full text
    This data package contains the data associated with the World Water Map project (worldwatermap.nationalgeographic.org). The World Water Map informs on the state of the worlds water resources between 1980 and 2019: storages and fluxes in the terrestrial water cycle, human impacts on the water cycle (i.e. demand, withdrawal and consumption) and, most importantly, the gap between renewable water availability and human water demands (i.e. the water gap). The data behind the World Water Map is based on the global hydrological model PCR-GLOBWB (globalhydrology.nl/research/models/pcr-globwb-2-0), which was developed at Utrecht University. This data package contains all the maps associated with the World Water Map. For more information, please contact Bram Droppers ([email protected]) or Niko Wanders ([email protected]). For more information on the global hydrological model PCR-GLOBWB and its components: Sutanudjaja, E. H., Van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., LĂłpez, P. L., PeĂźenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D. & Bierkens, M. F. (2018). PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 11(6), 2429-2453. doi.org/10.5194/gmd-11-2429-2018. The model code is publicly available at github.com/UU-Hydro/PCR-GLOBWB_model

    Worldwide water constraints on attainable irrigated production for major crops

    Get PDF
    In order to achieve worldwide food security, there is a focus on sustainable intensification of crop production. This requires sustainable irrigation water use for irrigated croplands, as irrigation withdrawals are already resulting in groundwater exploitation and unmet ecosystem water requirements. Our study aims to quantify attainable wheat, maize, rice and soybean production on currently irrigated cropland under sustainable water use. Attainable production accounts for increases in nutrient application, while limiting irrigation withdrawals to renewable water availability and without compromising river ecosystem water requirements. Attainable production was quantified using a newly developed two-way coupled hydrological model and crop model. This model framework could comprehensively simulate biophysical processes related to water availability and crop growth under water and nutrient limitations. Our results indicate worldwide crop nitrogen uptake should increase by 20%, to achieve production gap closure. However, worldwide irrigation withdrawals should decrease by more than a third in order to ensure sustainable water use. Under these constraints, a total (all crops) production decrease of 5% was estimated, compared to currently achievable production. Moreover, achievable irrigated crop production in the extensively irrigated croplands of northeastern China, Pakistan and northwestern India would be reduced by up to a third. On the other hand, increases in achievable irrigated crop production may be possible in regions such as southern America, eastern Europe and central Africa. However, in these regions currently only a small fraction of crops is irrigated. Our results imply that intensification on currently irrigated croplands is at odds with sustainable water management, and further locally-oriented research is needed to assess suitable water management options and solutions

    Worldwide water constraints on attainable irrigated production for major crops

    Get PDF
    In order to achieve worldwide food security, there is a focus on sustainable intensification of crop production. This requires sustainable irrigation water use for irrigated croplands, as irrigation withdrawals are already resulting in groundwater exploitation and unmet ecosystem water requirements. Our study aims to quantify attainable wheat, maize, rice and soybean production on currently irrigated cropland under sustainable water use. Attainable production accounts for increases in nutrient application, while limiting irrigation withdrawals to renewable water availability and without compromising river ecosystem water requirements. Attainable production was quantified using a newly developed two-way coupled hydrological model and crop model. This model framework could comprehensively simulate biophysical processes related to water availability and crop growth under water and nutrient limitations. Our results indicate worldwide crop nitrogen uptake should increase by 20%, to achieve production gap closure. However, worldwide irrigation withdrawals should decrease by more than a third in order to ensure sustainable water use. Under these constraints, a total (all crops) production decrease of 5% was estimated, compared to currently achievable production. Moreover, achievable irrigated crop production in the extensively irrigated croplands of northeastern China, Pakistan and northwestern India would be reduced by up to a third. On the other hand, increases in achievable irrigated crop production may be possible in regions such as southern America, eastern Europe and central Africa. However, in these regions currently only a small fraction of crops is irrigated. Our results imply that intensification on currently irrigated croplands is at odds with sustainable water management, and further locally-oriented research is needed to assess suitable water management options and solutions

    Climate-change impacts and adaptation for Pakistan’s irrigated agriculture

    Get PDF
    Pakistan is one of the most vulnerable counties in terms climate-change impacts on its agricultural productivity. Agriculture is not only the largest sector in Pakistan’s economy, the food security of its over 220 million inhabitants also strongly depends on its production. As Pakistan’s arid croplands are extensively irrigated, agricultural productivity is affected by increasing temperatures (projected to increase up to 6°C between 2000 and 2100 under a limited climate-change mitigation scenario), changes in water availability (i.e. river streamflow and groundwater resources) and atmospheric carbon dioxide concentrations ([CO2]; affecting both crop productivity and water use efficiency). Here we present the impacts of climate change on Pakistan’s primary cereal crops: wheat and rice. Impacts are quantified by combining several climate-change scenarios with a process-based coupled hydrological-crop model, VIC-WOFOST. VIC-WOFOST comprehensively estimates changes in crop growth, water resources and their interactions under climate change. Moreover, the role of elevated [CO2] on agricultural productivity and sustainable water use is specifically assessed. We then explore the possibilities and limitations of agricultural adaptation to enable sustainable food security for Pakistan under various climate-change and population growth scenarios. Our results show that climate-change will severely affect Pakistan’s agriculture, especially due increased temperatures and crop heat stress. However, climate-change adaptation can potentially mitigate some of these effects, especially for wheat production. Moreover, with sufficient agricultural adaptation, climate-change can even be beneficial for Pakistan’s agriculture due to the benefits of elevated [CO2]. While our study is focussed on Pakistan, it indicates pathways for sustainable food production under climate change that may also be important for other regions that strongly depend on irrigated agriculture
    corecore