89 research outputs found

    Gradient Schemes for Linear and Non-linear Elasticity Equations

    Full text link
    The Gradient Scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the Gradient Scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numerical methods for elasticity are embedded in the Gradient Scheme framework, which allows us to obtain convergence results for these methods in cases where the solution does not satisfy the full H2H^2-regularity or for non-linear models

    Continuous dependence estimates for nonlinear fractional convection-diffusion equations

    Full text link
    We develop a general framework for finding error estimates for convection-diffusion equations with nonlocal, nonlinear, and possibly degenerate diffusion terms. The equations are nonlocal because they involve fractional diffusion operators that are generators of pure jump Levy processes (e.g. the fractional Laplacian). As an application, we derive continuous dependence estimates on the nonlinearities and on the Levy measure of the diffusion term. Estimates of the rates of convergence for general nonlinear nonlocal vanishing viscosity approximations of scalar conservation laws then follow as a corollary. Our results both cover, and extend to new equations, a large part of the known error estimates in the literature.Comment: In this version we have corrected Example 3.4 explaining the link with the results in [51,59

    On a stochastic partial differential equation with non-local diffusion

    Full text link
    In this paper, we prove existence, uniqueness and regularity for a class of stochastic partial differential equations with a fractional Laplacian driven by a space-time white noise in dimension one. The equation we consider may also include a reaction term

    ADEPOS: Anomaly Detection based Power Saving for Predictive Maintenance using Edge Computing

    Full text link
    In industry 4.0, predictive maintenance(PM) is one of the most important applications pertaining to the Internet of Things(IoT). Machine learning is used to predict the possible failure of a machine before the actual event occurs. However, the main challenges in PM are (a) lack of enough data from failing machines, and (b) paucity of power and bandwidth to transmit sensor data to cloud throughout the lifetime of the machine. Alternatively, edge computing approaches reduce data transmission and consume low energy. In this paper, we propose Anomaly Detection based Power Saving(ADEPOS) scheme using approximate computing through the lifetime of the machine. In the beginning of the machines life, low accuracy computations are used when the machine is healthy. However, on the detection of anomalies, as time progresses, the system is switched to higher accuracy modes. We show using the NASA bearing dataset that using ADEPOS, we need 8.8X less neurons on average and based on post-layout results, the resultant energy savings are 6.4 to 6.65XComment: Submitted to ASP-DAC 2019, Japa

    Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem

    Full text link
    We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB) equations, i.e. scalar conservation laws with diffusive-dispersive regularization. We review the existence of traveling wave solutions for these two classes of evolution equations. For classical equations the traveling wave problem (TWP) for a local KdVB equation can be identified with the TWP for a reaction-diffusion equation. In this article we study this relationship for these two classes of evolution equations with nonlocal diffusion/dispersion. This connection is especially useful, if the TW equation is not studied directly, but the existence of a TWS is proven using one of the evolution equations instead. Finally, we present three models from fluid dynamics and discuss the TWP via its link to associated reaction-diffusion equations

    Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions

    Full text link
    We introduce an iterative method for computing the first eigenpair (λp,ep)(\lambda_{p},e_{p}) for the pp-Laplacian operator with homogeneous Dirichlet data as the limit of (μq,uq)(\mu_{q,}u_{q}) as qpq\rightarrow p^{-}, where uqu_{q} is the positive solution of the sublinear Lane-Emden equation Δpuq=μquqq1-\Delta_{p}u_{q}=\mu_{q}u_{q}^{q-1} with same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of uqu_{q} to epe_{p} is in the C1C^{1}-norm and the rate of convergence of μq\mu_{q} to λp\lambda_{p} is at least O(pq)O(p-q). Numerical evidence is presented.Comment: Section 5 was rewritten. Jed Brown was added as autho

    A posteriori error estimates for the virtual element method

    Get PDF
    An a posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Upper and lower bounds of the error estimator with respect to the VEM approximation error are proven. The error estimator is used to drive adaptive mesh refinement in a number of test problems. Mesh adaptation is particularly simple to implement since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes do not require any local mesh post-processing
    corecore