89 research outputs found
Gradient Schemes for Linear and Non-linear Elasticity Equations
The Gradient Scheme framework provides a unified analysis setting for many
different families of numerical methods for diffusion equations. We show in
this paper that the Gradient Scheme framework can be adapted to elasticity
equations, and provides error estimates for linear elasticity and convergence
results for non-linear elasticity. We also establish that several classical and
modern numerical methods for elasticity are embedded in the Gradient Scheme
framework, which allows us to obtain convergence results for these methods in
cases where the solution does not satisfy the full -regularity or for
non-linear models
Continuous dependence estimates for nonlinear fractional convection-diffusion equations
We develop a general framework for finding error estimates for
convection-diffusion equations with nonlocal, nonlinear, and possibly
degenerate diffusion terms. The equations are nonlocal because they involve
fractional diffusion operators that are generators of pure jump Levy processes
(e.g. the fractional Laplacian). As an application, we derive continuous
dependence estimates on the nonlinearities and on the Levy measure of the
diffusion term. Estimates of the rates of convergence for general nonlinear
nonlocal vanishing viscosity approximations of scalar conservation laws then
follow as a corollary. Our results both cover, and extend to new equations, a
large part of the known error estimates in the literature.Comment: In this version we have corrected Example 3.4 explaining the link
with the results in [51,59
On a stochastic partial differential equation with non-local diffusion
In this paper, we prove existence, uniqueness and regularity for a class of
stochastic partial differential equations with a fractional Laplacian driven by
a space-time white noise in dimension one. The equation we consider may also
include a reaction term
ADEPOS: Anomaly Detection based Power Saving for Predictive Maintenance using Edge Computing
In industry 4.0, predictive maintenance(PM) is one of the most important
applications pertaining to the Internet of Things(IoT). Machine learning is
used to predict the possible failure of a machine before the actual event
occurs. However, the main challenges in PM are (a) lack of enough data from
failing machines, and (b) paucity of power and bandwidth to transmit sensor
data to cloud throughout the lifetime of the machine. Alternatively, edge
computing approaches reduce data transmission and consume low energy. In this
paper, we propose Anomaly Detection based Power Saving(ADEPOS) scheme using
approximate computing through the lifetime of the machine. In the beginning of
the machines life, low accuracy computations are used when the machine is
healthy. However, on the detection of anomalies, as time progresses, the system
is switched to higher accuracy modes. We show using the NASA bearing dataset
that using ADEPOS, we need 8.8X less neurons on average and based on
post-layout results, the resultant energy savings are 6.4 to 6.65XComment: Submitted to ASP-DAC 2019, Japa
Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem
We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB)
equations, i.e. scalar conservation laws with diffusive-dispersive
regularization. We review the existence of traveling wave solutions for these
two classes of evolution equations. For classical equations the traveling wave
problem (TWP) for a local KdVB equation can be identified with the TWP for a
reaction-diffusion equation. In this article we study this relationship for
these two classes of evolution equations with nonlocal diffusion/dispersion.
This connection is especially useful, if the TW equation is not studied
directly, but the existence of a TWS is proven using one of the evolution
equations instead. Finally, we present three models from fluid dynamics and
discuss the TWP via its link to associated reaction-diffusion equations
Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions
We introduce an iterative method for computing the first eigenpair
for the -Laplacian operator with homogeneous Dirichlet
data as the limit of as , where
is the positive solution of the sublinear Lane-Emden equation
with same boundary data. The method is
shown to work for any smooth, bounded domain. Solutions to the Lane-Emden
problem are obtained through inverse iteration of a super-solution which is
derived from the solution to the torsional creep problem. Convergence of
to is in the -norm and the rate of convergence of
to is at least . Numerical evidence is
presented.Comment: Section 5 was rewritten. Jed Brown was added as autho
A posteriori error estimates for the virtual element method
An a posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Upper and lower bounds of the error estimator with respect to the VEM approximation error are proven. The error estimator is used to drive adaptive mesh refinement in a number of test problems. Mesh adaptation is particularly simple to implement since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes do not require any local mesh post-processing
- …