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Abstract. We generalize the notion of renormalized solution to semilinear
elliptic and parabolic equations involving operator associated with general
(possibly nonlocal) regular Dirichlet form and smooth measure on the
right-hand side. We show that under mild integrability assumption on
the data a quasi-continuous function u is a renormalized solution to an
elliptic (or parabolic) equation in the sense of our definition if and only
if u is its probabilistic solution, i.e. u can be represented by a suitable
nonlinear Feynman–Kac functional. This implies in particular that for
a broad class of local and nonlocal semilinear equations there exists a
unique renormalized solution.
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1. Introduction

The aim of this paper is to extend the notion of renormalized solution to
encompass semilinear elliptic and parabolic equations involving measure data
and operators associated with Dirichlet forms. The paper consists of two parts.
In the first one we are concerned with elliptic equations of the form

− Lu = f(x, u) + μ. (1.1)

In (1.1), L is the operator associated with a regular Dirichlet form (E ,D(E))
on L2(E;m) and f : E × R → R is a measurable function. As for μ we assume
that it is a bounded smooth measure on E, i.e. a measure of bounded total
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variation on E which charges no set of zero capacity associated with the form
(E ,D(E)). Note that the class of operators L we consider is quite large. It
contains many local as well as nonlocal operators. The model examples are
Laplacian and fractional Laplacian (many other examples are to be found for
instance in [1–4]).

An important problem one encounters when dealing with equations of
the form (1.1) is to define properly a solution. In case L is local and (1.1) is
linear, i.e. f does not depend on u, some definition, now called Stampacchia’s
definition by duality, was proposed in [5]. To deal with semilinear equations the
definitions of entropy solution (see [6]) and of renormalized solution (see [7])
have been introduced. For a comparison of different forms of these definitions
as well as remarks on other concepts of solutions see [7]. In case E = D ⊂ R

d

is a bounded domain and L is a uniformly elliptic operator in divergence form
with Dirichlet boundary conditions associated with the classical form

E(ϕ,ψ) =
∫

D

(a∇ϕ,∇ψ) dx, ϕ, ψ ∈ H1
0 (D)

one of the equivalent definitions of a solution of (1.1) given in [7] says that
a quasi-continuous u : D → R is a renormalized solution of (1.1) if f(·, u) ∈
L1(D), Tku ∈ H1

0 (D) for k > 0, where Tku = ((−k) ∨ u) ∧ k, and there exists
a sequence {νk} of bounded smooth measures on D such that ‖νk‖TV → 0 as
k → ∞ and for any bounded quasi-continuous v ∈ H1

0 (D) and k ∈ N,∫
D

(a∇(Tku),∇v) dx =
∫

D

f(x, u)v(x) dx +
∫

D

v(x) dx +
∫

D

v(x) νk(dx).

(1.2)
In fact, the notion of entropy or renormalized solution can be applied to deal
with more general then (1.1) equations in which L is a Leray–Lions type op-
erator and μ is not necessarily smooth.

Another approach to (1.1), covering both local and nonlocal operators,
have been proposed in [2,3]. In this probabilistic in nature approach, a quasi-
continuous (with respect to the form E) function u : E → R is a solution of
(1.1) if the following nonlinear Feynman–Kac formula

u(x) = Ex

(∫ ζ

0

f(Xt, u(Xt)) dt +
∫ ζ

0

dAμ
t

)
(1.3)

is satisfied for quasi-every x ∈ E. Here M = (X,Px) is a Markov process
with life time ζ associated with E , Ex denotes the expectation with respect
to Px and Aμ is the additive functional of M associated with μ in the Revuz
sense (see Sect. 2). In (1.3) we only assume that u is quasi-continuous and the
integrals make sense. In fact, if (1.3) holds and f(·, u) ∈ L1(E;m) then using
the probabilistic potential theory and the theory of Dirichlet forms one can
show that u has some additional regularity properties. Namely, Tku belongs
to the extended Dirichlet space De(E) for every k > 0.

In [2,3] also a purely analytical definition of a solution of (1.1) resembling
Stampacchia’s definition is proposed (see also [8,9] for another approach in case
of linear equation with L being a fractional Laplacian). We call it a solution in
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the sense of duality. In [2,3] it is shown that under quite general assumptions
on E , f, μ a function u is a solution in the sense of duality if and only if it is a
probabilistic solution defined by (1.3). However, the definition in the sense of
duality seems to be not particularly handy tool for investigating (1.1).

The natural question arises whether the concept of renormalized solution
can be carried over to general (possibly nonlocal) operators corresponding
to E (for some partial results in this direction see [10]). An obvious related
question to ask is what is the relation between (1.2) and (1.3), i.e. between
renormalized and probabilistic solutions? It appears that (1.2) is the right form
of the definition to be generalized to encompass wider class of operators. In
the paper, under the assumption that E is transient, we define renormalized
solution of (1.1) as a quasi-continuous function u : E → R such that f(·, u) ∈
L1(E;m), Tku ∈ De(E) for k > 0 and there is a sequence {νk} of bounded
smooth measures on E such that ‖νk‖TV → 0 and

E(Tku, v) =
∫

E

f(x, u)v(x)m(dx) +
∫

E

v(x)μ(dx) +
∫

E

v(x) νk(dx) (1.4)

for every k ∈ N and every bounded quasi-continuous v ∈ De(E). Thus (1.4)
is a direct extension of (1.2) to general transitive Dirichlet forms. Our main
theorem says that for transitive forms (1.3) is equivalent to (1.4), or more
precisely, that u is a probabilistic solution of (1.1) if and only if it is a renor-
malized solution of (1.1). Since one can prove that under some assumptions on
f there exists a unique probabilistic solution of (1.1) for L associated with E
(see [2,3] and Section 3 for some examples), our result a fortiori says that (1.4)
provides right definition of a solution. In particular, (1.4) ensures uniqueness
for interesting classes of equations. In general, the equivalence of (1.3) and
(1.4) sheds new light on the nature of both probabilistic and analytic (renor-
malized) solutions of (1.1). What is perhaps more important, it also says that
in the study of (1.1) one can use both probabilistic and analytical methods
from the theory of PDEs. Let us point out once again, that contrary to [7],
in our theorem we assume that the measure μ is smooth. An interesting open
problem is how to define renormalized solutions for general bounded measures,
at least for some classes of nonlocal operators. Finally, let us note that in case
L = Δ the equivalence between probabilistic and renormalized solutions to
(1.1) was observed in [11].

In the second part of the paper we consider parabolic equation of the
form

− ∂u

∂t
− Ltu = f(t, x, u) + μ, u(T ) = ϕ, (1.5)

where ϕ : E → R, f : [0, T ] × E → R, the operators ∂
∂t + Lt correspond to

some time dependent regular Dirichlet form E0,T and μ is a bounded measure
on (0, T ] × E which is smooth with respect to the capacity associated with
E0,T.

In case Lt are local, a definition of a renormalized solution of equations
of the form (1.5) involving more general nonlinear local operators Lt of Leray–
Lions type but with f not depending on u have been introduced in [12] (see
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also [13] for earlier existence results for equations with general bounded mea-
sure μ and [14] for uniqueness results in the case where μ is a function in
L1). In [15,16] definitions of renormalized solutions to (1.5) with Leray–Lions
type operators and f depending on u have been proposed (in [16] equations
with general, not necessarily smooth measures are considered). Another de-
finition of a renormalized solution, which is suitable for handling equations
with local operators and nonlinear f , have been introduced in [17]. It may
be viewed as parabolic analogue of (1.2). Existence and uniqueness results for
weak solutions to linear equations with fractional Laplacian and μ being a
function in L1 are proved in [9]. A probabilistic approach to (1.5) has been
developed in [18]. A probabilistic solution of (1.5) is defined similarly to (1.3),
but with M replaced by a time-space Markov process associated with E0,T . In
[18] the existence, uniqueness and regularity of probabilistic solutions of (1.5)
is proved for f satisfying some natural conditions (monotonicity together with
mild integrability conditions) and general operators associated with E0,T .

Similarly to the elliptic case, in the paper we generalize the notion of a
renormalized solution of [17] to the case of general operators corresponding
to E0,T . Then we show that the proposed definition is equivalent to the prob-
abilistic definition considered in [18]. As in elliptic case, this shows that the
renormalized solutions are properly defined and gives new information on the
structure of solutions. We illustrate the utility of our result by stating some
theorems on existence and uniqueness of renormalized solutions of parabolic
equations with f satisfying the monotonicity condition and mild integrability
conditions.

For simplicity, in the paper we confine ourselves to equations with op-
erators corresponding to regular forms, but our results can be generalized to
quasi-regular forms (see remarks at the end of Sects. 3 and 4).

2. Preliminaries

In the paper we assume that E is a locally compact separable metric space
and m is an everywhere dense Radon measure on E, i.e. m is a non-negative
Borel measure on E finite on compact sets and strictly positive on non-empty
open sets.

We set E1 = R × E, ET = [0, T ] × E, E0,T = (0, T ] × E. By B(E) we
denote the σ-field of Borel subsets of E. Bb(E) is the set of all real bounded
Borel measurable functions on E and B+

b (E) is the subset of Bb(E) consisting
of positive functions. The sets B(E1), Bb(E1), B+

b (E1) are defined analogously.
We set H = L2(E;m) and H0,T = L2(0, T ;H). The last space we identify

with L2(ET ;m1), where m1 = dt⊗m. By (·, ·)H , (·, ·)H0,T
we denote the usual

inner products in H and H0,T , respectively.

2.1. Dirichlet forms

In what follows we assume that (E ,D(E)) is a (non-symmetric) Dirichlet form
on H, i.e. positive definite closed form satisfying the weak sector condition
and such that (E ,D(E)) has both the sub-Markov and the dual sub-Markov
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property. For the definitions we refer the reader to [4]. Here let us only recall
that (E ,D(E)) satisfies the weak sector condition if there is K > 0 (called the
sector constant) such that

|E1(u, v)| ≤ KE1(u, u)1/2E1(v, v)1/2, u, v ∈ D(E),

where Eα(u, v) = E(u, v) + α(u, v)H for α ≥ 0. If there is K > 0 such that

|E(u, v)| ≤ KE(u, u)1/2E(v, v)1/2, u, v ∈ D(E), (2.1)

then we say that (E ,D(E)) satisfies the strong sector condition.
By Theorems I.2.8 and I.4.4 in [4] every Dirichlet form on H determines

uniquely strongly continuous contraction resolvents (Gα)α>0, (Ĝα)α>0 on H

such that Gα, Ĝα are sub-Markov, Gα(H) ⊂ D(E), Ĝα(H) ⊂ D(E) and

Eα(Gαf, u) = (f, u)H = Eα(u, Ĝαf), f ∈ H, u ∈ D(E), α > 0.

In fact, from the sub-Markov and the dual sub-Markov property of (E ,D(E))
it follows that (Gα)α>0, (Ĝα)α>0 may be extended to sub-Markov resolvents
on L∞(E;m) and on L1(E;m), respectively (see [19, Section 1.1]).

Let f ∈ L∞(E;m) be a non-negative function. Since G1/lf increases as
l ↑ ∞, the potential operator

Gf = lim
l→∞

G1/lf

is m-a.e. well defined but may take the value ∞. We say that E is transient if
Gf < ∞ m-a.e. for every non-negative f ∈ L∞(E;m).

Let Ẽ denote the symmetric part of E , i.e. Ẽ(u, v) = 1
2 (E(u, v) + E(v, u)).

The extended Dirichlet space De(E) associated with (E ,D(E)) is the family of
measurable functions u : E → R such that |u| < ∞ m-a.e. and there exists an
Ẽ-Cauchy sequence {un} ⊂ D(E) such that un → u m-a.e. The sequence {un}
is called an approximating sequence for u ∈ De(E).

For u ∈ De(E) we set E(u, u) = limn→∞ E(un, un), where {un} is an ap-
proximating sequence for u. If moreover E satisfies the strong sector condition
(2.1) then we may extend E to De(E) by putting E(u, v) = limn→∞ E(un, vn)
with approximating sequences {un} and {vn} for u ∈ De(E) and v ∈ De(E),
respectively (see [19, Section 1.3]). This extension satisfies again the strong sec-
tor condition. By [19, Theorem 1.3.9], if (E ,D(E)) is transient then (De(E), Ẽ)
is a Hilbert space.

Given a Dirichlet form (E ,D(E)) we define quasi notions with respect to
E (exceptional sets, nests and quasi-continuity) as in [4, Chapter III] (see also
[19, Sections 2.1, 2.2]). We will say that a property of points in E holds quasi
everywhere (q.e. for short) if it holds outside some exceptional set.

In the paper we assume that (E ,D(E)) is regular (see [4, Section IV.4] or
[19, Section 1.2] for the definition). By [4, Proposition IV.3.3], if (E ,D(E)) is a
regular Dirichlet form then each element u ∈ D(E) admits an quasi-continuous
m-version, which we denote by ũ, and ũ is q.e. unique for every u ∈ D(E). If
moreover (E ,D(E)) is transient then such a unique m-version ũ exists for every
u ∈ De(E). This follows from [1, Theorem 2.1.7] and the fact that De(E) and
the notion of quasi-continuity only depend on the symmetric part of E .
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A positive measure μ on B(E) is said to be smooth (μ ∈ S(E) in notation)
if μ(B) = 0 for all exceptional sets B ∈ B(E) and there exists an nest {Fk}k∈N

of compact sets such that μ(Fk) < ∞ for k ∈ N.
Given a transient form (E ,D(E)) satisfying the strong sector condition

we will denote by S
(0)
0 (E) the set of measures of finite 0-order energy integral,

i.e. the subset of S(E) consisting of all measures ν ∈ S(E) such that for some
c > 0, ∫

E

|ũ(x)| ν(dx) ≤ cE(u, u)1/2, u ∈ De(E).

If ν ∈ S
(0)
0 (E) then from the Lax-Milgram theorem it follows that there is a

unique element Ûν (called a copotential of ν) such that

E(u, Ûν) =
∫

E

ũ(x) ν(dx), u ∈ De(E).

By Ŝ
(0)
00 (E) we denote the subset of S

(0)
0 (E) consisting of all measures ν such

that ν(E) < ∞ and ‖Ûν‖∞ < ∞.

2.2. Time dependent Dirichlet forms

We assume that we are given a family {B(t), t ∈ [0, T ]} of Dirichlet forms on
H with common domain V and sector constant K independent of t. We also
assume that

(a) [0, T ] � t �→ B(t)(ϕ,ψ) is measurable for every ϕ,ψ ∈ V ,
(b) there is a constant λ ≥ 1 such that λ−1B(ϕ,ϕ) ≤ B(t)(ϕ,ϕ) ≤ λB(ϕ,ϕ)

for every t ∈ [0, T ] and ϕ ∈ V , where B(ϕ,ϕ) = B(0)(ϕ,ϕ).

By putting B(t) = B for t ∈ R\[0, T ] we may and will assume that B(t) is
defined and satisfies (a), (b) for t ∈ R.

By the definition of a Dirichlet form V is a dense subspace of H and
(B, V ) is closed. Therefore V is a real Hilbert space with respect to B̃1(·, ·),
which is densely and continuously embedded in H. By ‖ · ‖V we denote the
norm in V , i.e. ‖ϕ‖2

V = B1(ϕ,ϕ), ϕ ∈ V . By V ′ we denote the dual space of V
and by ‖ · ‖V ′ the corresponding norm. We set H = L2(R;H), V = L2(R;V ),
V ′ = L2(R;V ′) and

‖u‖2
V =

∫
R

‖u(t)‖2
V dt, ‖u‖2

V′ =
∫
R

‖u(t)‖2
V ′ dt. (2.2)

We shall identify H and its dual H ′. Then V ⊂ H � H ′ ⊂ V ′ continuously
and densely, and hence V ⊂ H � H′ ⊂ V ′ continuously and densely.

For u ∈ V we denote by ∂u
∂t the derivative in the distribution sense of the

function t �→ u(t) ∈ V and we set

W = {u ∈ V :
∂u

∂t
∈ V ′}, ‖u‖W = ‖u‖V + ‖∂u

∂t
‖V′ (2.3)

We will consider time dependent Dirichlet forms E and E0,T associated
with the families {(B(t), V ), t ∈ R} and {(B(t), V ), t ∈ [0, T ]}, respectively. We
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define E by

E(u, v) =

{
〈−∂u

∂t , v〉 + B(u, v), u ∈ W, v ∈ V,

〈∂v
∂t , u〉 + B(u, v), u ∈ V, v ∈ W,

(2.4)

where 〈·, ·〉 is the duality pairing between V ′ and V and

B(u, v) =
∫
R

B(t)(u(t), v(t)) dt.

Note that E can be identified with some generalized Dirichlet form (see [20,
Example I.4.9.(iii)]).

Given a time dependent form (2.4) we define capacity as in [19, Section
6.2], and then using it we define quasi-notions (exceptional sets, nests and
quasi-continuity) as in [19, Section 6.2]. Note that by [19, Theorem 6.2.11]
each element u of W has a quasi-continuous m1-version. We will denote it by
ũ.

To define E0,T , we set H0,T = L2(0, T ;H), V0,T = L2(0, T ;V ), V ′
0,T =

L2(0, T ;V ′) and W0,T = {u ∈ V0,T : ∂u
∂t ∈ V ′

0,T } (the norms in V0,T , V ′
0,T , W0,T

are defined analogously to (2.2), (2.3)). Let C([0, T ];H) denote the space of
all continuous functions on [0, T ] with values in H equipped with the norm
‖u‖C = sup0≤t≤T ‖u(t)‖H . It is known (see, e.g., [21, Theorem 2] that there is
a continuous embedding of W0,T into C([0, T ];H), i.e. for every u ∈ W0,T one
can find ū ∈ C([0, T ];H) such that u(t) = ū(t) for a.e. t ∈ [0, T ] (with respect
to the Lebesgue measure) and

‖ū‖C ≤ M‖u‖W0,T
(2.5)

for some M > 0. In what follows we adopt the convention that any element of
W0,T is already in C([0, T ];H). With this convention we may define the spaces

W0 = {u ∈ W0,T : u(0) = 0}, WT = {u ∈ W0,T : u(T ) = 0}.

By the definition of W0,T , ∂/∂t : W0,T → V ′
0,T is bounded. Since W0 is dense

in V0,T , we can regard the restriction of ∂/∂t to W0 as an unbounded operator
from V0,T to V ′

0,T defined on W0. Its adjoint is defined on WT and is given by
−∂/∂t (see, e.g., [21]). Finally, we set

E0,T (u, v) =

{
〈−∂u

∂t , v〉 +
∫ T

0
B(t)(u(t), v(t)) dt, u ∈ WT , v ∈ V0,T ,

〈∂v
∂t , u〉 +

∫ T

0
B(t)(u(t), v(t)) dt, u ∈ V0,T , v ∈ W0,

(2.6)

where now 〈·, ·〉 denote the duality pairing between V ′
0,T and V0,T . As in the

case of E , the form E0,T can be identified with some generalized Dirichlet form
(see [20, Example I.4.9.(iii)]).

By Propositions I.3.4 and I.3.6 in [20] the form E0,T determines uniquely
strongly continuous resolvents (G0,T

α )α>0, (Ĝ0,T
α )α>0 on H0,T such that G0,T

α ,
Ĝ0,T

α are sub-Markov, G0,T
α (H0,T ) ⊂ WT , Ĝ0,T

α (H0,T ) ⊂ W0 and

E0,T
α (G0,T

α η, u) = (u, η)H0,T
, E0,T

α (u, Ĝ0,T
α η) = (u, η)H0,T

for u ∈ V0,T and η ∈ H0,T , where E0,T
α (u, v) = E0,T (u, v) + α(u, v)H0,T

for
α ≥ 0.
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2.3. Markov processes and additive functionals

In what follows Δ is a one-point compactification of E. If E is already compact
then we adjoin Δ to E as an isolated point.

In the case of Dirichlet forms (and elliptic equations) we adopt the con-
vention that every function f on E is extended to E∪{Δ} by setting f(Δ) = 0.

In the case of time dependent Dirichlet forms (and parabolic equations)
we adopt the convention that every function ϕ on E is extended to E1 by
setting ϕ(t, x) = ϕ(x), (t, x) ∈ E1, and every function f on E1 (resp. E0,T ) is
extended to E1 ∪ {Δ} by setting f(Δ) = 0 (resp. f(z) = 0 for z ∈ E1 ∪ {Δ} \
E0,T ).
Dirichlet forms. Let (E ,D(E)) be a regular Dirichlet form on H. Then there
exists a unique Hunt process M = (Ω, (Ft)t≥0, (Xt)t≥0, ζ, (Px)x∈E∪{Δ}) with
state space E, life time ζ and cemetery state Δ properly associated with
(E ,D(E)) (see Theorems IV.3.5, IV.6.4 and V.2.13 in [4]). The last statement
means that for every α > 0 and f ∈ Bb(E) ∩ H the resolvent of M, that is the
function

Rαf(x) = Ex

∫ ∞

0

e−αtf(Xt) dt, x ∈ E, α > 0

is a quasi-continuous m-version of Gαf (see [4, Proposition IV.2.8]).
It is known (see, e.g., [4, Theorem VI.2.4]) that there is a one to one

correspondence (called Revuz correspondence) between smooth measures μ
and positive continuous additive functionals (positive CAFs) A of M. It is
given by the following relation

lim
t→0+

1
t
Em

∫ t

0

f(Xs) dAs =
∫

E

f(x)μ(dx), f ∈ B+(E), (2.7)

where Em denotes the expectation with respect to the measure Pm(·) =∫
E

Px(·)m(dx). In what follows the positive CAF of M corresponding to μ ∈
S(E) will be denoted by Aμ.

For μ ∈ S(E) we set

Rμ(x) = Ex

∫ ζ

0

dAμ
t , x ∈ E

and

R(E) = {μ : |μ| ∈ S(E), R|μ| < ∞ m-a.e.},

where |μ| denotes the total variation of μ. Note that by [3, Lemma 2.3], in the
above definition of the class R(E) one can replace m-a.e. by q.e. By M0,b(E)
we denote the space of all signed measures μ on E such that |μ| ∈ S(E) and
|μ|(E) < ∞. By [3, Proposition 3.2], if (E ,D(E)) is transient then M0,b(E) ⊂
R(E).
Time dependent Dirichlet forms. Let us consider the time dependent Dirichlet
form E defined by (2.4). Then by [19, Theorem 6.3.1] there exists a Hunt
process M = (Ω, (Ft)t≥0, (Xt)t≥0, ζ, (Pz)z∈E1∪{Δ}) with state space E1, life
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time ζ and cemetery state Δ properly associated with E in the sense that for
every α > 0 and f ∈ Bb ∩ L2(E1;m1) the resolvent of M defined as

Rαf(z) = Ez

∫ ∞

0

e−αtf(Xt) dt, x ∈ E, α > 0

is a quasi-continuous version of the resolvent Gαf associated with E . Moreover,
by [19, Theorem 6.3.1],

Xt = (τ(t),Xτ(t)), t ≥ 0,

where τ(t) is the uniform motion to the right, i.e. τ(t) = τ(0) + t, τ(0) = s,
Pz-a.s. for z = (s, x).

Let S(E1) denote the set of smooth measures on E1 (with respect to E),
which we define analogously to S(E) (see, e.g., [18,20] for details). We say that
a positive AF A of M is in the Revuz correspondence with μ ∈ S(E1) if

lim
α→∞ αEm1

∫ ∞

0

e−αtf(Xt) dAt =
∫

E1
f(z)μ(dz), f ∈ B+

b (E1),

where Em1 denotes the expectation with respect to Pm1(·) =
∫

E1 Pz(·)m1(dz)
(see [22,23]).

It is known (see [18, Section 2]) that for every μ ∈ S(E1) there exists a
unique positive natural AF A of M, i.e. a positive AF of M such that A and M
have no common discontinuities, such that A is in the Revuz correspondence
with μ. In what follows we will denote it by Aμ. In fact, Aμ is a predictable
process (see [24]). On the contrary, if A is a positive natural AF of M then by
Proposition in Section II.1 of [23] and [22, Theorem 5.6] there exists a smooth
measure μ on E1 such that A is in the Revuz correspondence with μ.

Let S(E0,T ) denote the set of all μ ∈ S(E1) with support in E0,T and for
μ ∈ S(E0,T ) let

R0,T μ(z) = Ez

∫ ζτ

0

dAμ
t , z ∈ E0,T ,

where
ζτ = ζ ∧ (T − τ(0)). (2.8)

We set

R(E0,T ) = {μ : |μ| ∈ S(E0,T ), R0,T |μ| < ∞ m1-a.e.}
and by M0,b(E0,T ) we denote the space of all signed measures μ on E1 such
that |μ| ∈ S(E0,T ) and |μ|(E1) < ∞. Note that by [18, Proposition 3.8],
M0,b(E0,T ) ⊂ R(E0,T ).

3. Elliptic equations

Let (E ,D(E)) be a regular Dirichlet form on H. We consider the problem

−Lu = fu + μ, (3.1)
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where f : E × R → R is a measurable function, fu = f(·, u), μ ∈ R(E) and L
is the operator associated with (E ,D(E)), i.e.

D(L) = {u ∈ D(E) : v �→ E(u, v) is continuous w.r.t. (·, ·)1/2
H on D(E)}

and
(−Lu, v)H = E(u, v), u ∈ D(L), v ∈ D(E) (3.2)

(see [4, Proposition I.2.16]).
In what follows M is the Markov process of Sect. 2 associated with

(E ,D(E)). Let us recall that a càdlàg adapted (with respect to (Ft)) process Y
is said to be of class (D) if the collection {Yτ , τ is a finite (Ft)-stopping time}
is uniformly integrable.

Definition 3.1. Let f : E × R → R be a measurable function and let Aμ be a
CAF of M corresponding to some μ ∈ R(E). We say that a pair (Y x,Mx) is
a solution of the backward stochastic differential equation

Y x
t = Y x

T∧ζ +
∫ T∧ζ

t∧ζ

f(Xs, Y
x
s ) ds +

∫ T∧ζ

t∧ζ

dAμ
s −

∫ T∧ζ

t∧ζ

dMx
s , t ≥ 0 (3.3)

under the measure Px if
(a) Y x is an (Ft)-progressively measurable càdlàg process such that Y x

t∧ζ →
0, Px-a.s. as t → ∞, Y x is of class (D) under Px and Mx is a càdlàg
(Ft)-local martingale under Px,

(b) For every T > 0, [0, T ] � t �→ f(Xt, Y
x
t ) ∈ L1(0, T ) and (3.3) is satisfied

Px-a.s.

The following definition is taken from [2,3].

Definition 3.2. Let μ ∈ R(E). We say that a quasi-continuous function u :
E → R is a probabilistic solution to (1.1) if fu · m ∈ R(E) and for q.e. x ∈ E,

u(x) = Ex

(∫ ζ

0

fu(Xt) dt +
∫ ζ

0

dAμ
t

)
. (3.4)

Remark 3.3. (i) The quasi-continuity requirement on u in the above defin-
ition can be omitted, because if μ, fu · m ∈ R(E) then from the very
definition of the class R(E) it follows that the right-hand side of (3.4)
is finite for m-a.e. x ∈ E, and, in consequence, it is a quasi-continuous
function of x (see [2, Lemma 4.3] and [3, Lemma 2.3]).

(ii) If u is a probabilistic solution to (1.1) then there exists a martingale
additive functional (MAF) M of M such that M is a martingale under
Px for q.e. x ∈ E and for q.e. x ∈ E the pair

(Yt,Mt) = (u(Xt),Mt), t ≥ 0

is a solution of (3.3) under Px. Indeed, with our convention (see the
beginning of Sect. 2.3),

u(x) = Ex

(∫ ∞

0

fu(Xt) dt +
∫ ∞

0

dAμ
t

)
.
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Set

Mx
t = Ex

(∫ ζ

0

fu(Xs) ds +
∫ ζ

0

dAμ
s |Ft∧ζ

)
− u(X0), t ≥ 0.

By [1, Lemma A.3.6] there exists a MAF M od M such that Mx
t = Mt,

t ≥ 0, Px-a.s. for q.e. x ∈ E. Therefore

Mt = Mt∧ζ = Ex

(∫ ζ

0

fu(Xs) ds +
∫ ζ

0

dAμ
s |Ft∧ζ

)
− u(X0), t ≥ 0 (3.5)

under Px for q.e. x ∈ E. By the strong Markov property, under Px we
have

Mt∧ζ =
∫ t∧ζ

0

(fu(Xs) ds + dAμ
s ) + Ex

(∫ ζ

t∧ζ

(fu(Xs) ds + dAμ
s )|Ft∧ζ

)

−u(X0)

=
∫ t∧ζ

0

(fu(Xs) ds + dAμ
s ) + EXt∧ζ

∫ ζ

0

(fu(Xs) ds + dAμ
s ) − u(X0)

=
∫ t∧ζ

0

(fu(Xs) ds + dAμ
s ) + u(Xt∧ζ) − u(X0)

for q.e. x ∈ E. Hence

u(Xt∧ζ) − u(XT∧ζ) =
∫ T∧ζ

t∧ζ

(fu(Xs) ds + dAμ
s ) −

∫ T∧ζ

t∧ζ

dMs,

which shows (3.3). Taking t = 0 in the above equality and using (3.5) we
get

u(XT∧ζ)=−
∫ T∧ζ

0

(fu(Xs) ds + dAμ
s ) + Ex

(∫ ζ

0

fu(Xs) ds +
∫ ζ

0

dAμ
s |FT∧ζ

)
.

It follows that for q.e. x ∈ E, u(XT∧ζ) → 0, Px-a.s. as T → ∞.

In what follows we assume that (E ,D(E)) is transient and satisfies the
strong sector condition. For a measure μ on E and a function u : E → R we
use the notation

〈μ, u〉 =
∫

E

u(x)μ(dx)

whenever the integral is well defined.
We adopt the following definition of renormalized solution of (1.1). In the

case of local operators, this is essentially [7, Definition 2.29].

Definition 3.4. Let μ ∈ M0,b(E). We say that u : E → R is a renormalized
solution of (1.1) if
(a) u is quasi-continuous, fu ∈ L1(E;m) and Tku ∈ De(E) for every k > 0,
(b) there exists a sequence {νk} ⊂ M0,b(E) such that ‖νk‖TV → 0 as k → ∞

and for every k ∈ N and every bounded v ∈ De(E),

E(Tku, v) = 〈fu · m + μ, ṽ〉 + 〈νk, ṽ〉. (3.6)
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Theorem 3.5. Assume that (E ,D(E)) is transient, satisfies the strong sector
condition and that μ ∈ M0,b(E).

(i) If u is a probabilistic solution of (1.1) and fu ∈ L1(E;m) then u is a
renormalized solution of (1.1).

(ii) If u is a renormalized solution of (1.1) then u is a probabilistic solution
of (1.1).

Proof. (i) Let u be a probabilistic solution of (1.1) and let M be the martingale
of Remark 3.3. (ii) For k > 0 put

Yt = u(Xt), Y k
t = Tku(Xt), t ≥ 0.

From the fact that (Y,M) is a solution of (3.3) it follows that

Yt = Yt∧ζ = Y0 −
∫ t∧ζ

0

f(Xs, Ys) ds −
∫ t∧ζ

0

dAμ
s +

∫ t∧ζ

0

dMs, t ≥ 0. (3.7)

By the Meyer–Itô formula (see, e.g., [25, Theorem IV.70]),

(u ∧ k)(Xt) − (u ∧ k)(X0) =
∫ t

0

1{Ys−≤k} dYs − A1,k
t (3.8)

and

(u(Xt) + k) ∧ 0 − (u(X0) + k) ∧ 0 =
∫ t

0

1{Ys−≤−k} dYs − A2,k
t (3.9)

for some increasing processes A1,k, A2,k. Since Tky = y ∧ k − ((y + k) ∧ 0) for
y ∈ R, it follows from (3.8) and (3.9) that

Y k
t − Y k

0 =
∫ t

0

1{−k<Ys−≤k} dYs − (A1,k
t − A2,k

t ). (3.10)

From (3.8), it follows immediately that A1,k, A2,k are AFs of M. Since u is a
probabilistic solution, u(Xt) → 0, Px-a.s. as t → ∞ for q.e. x ∈ E. Therefore
from (3.8) and continuity of Aμ we conclude that for q.e. x ∈ E,

ExA1,k
ζ = Ex(u ∧ k)(X0) − Ex

∫ ζ

0

1{Ys≤k}(fu(Xs) ds + dAμ
s ).

Since Ex(u ∧ k)(X0) = (u ∧ k)(x) ≤ u(x) and u is a probabilistic solution of
(1.1), it follows from the above that

ExA1,k
ζ ≤ Ex

∫ ζ

0

1{Ys>k}(fu(Xs) ds + dAμ
s ). (3.11)

Similarly, by (3.9) we have

ExA2,k
ζ ≤ −Ex

∫ ζ

0

1{Ys≤−k}(fu(Xs) ds + dAμ
s ). (3.12)

It follows that for q.e. x ∈ E, Ex(A1,k
ζ +A2,k

ζ ) < ∞. Therefore by [1, Theorem
A.3.16] there exists AFs B1,k, B2,k of M such that Bi,k is a compensator of
Ai,k, i = 1, 2 under Px for q.e. x ∈ E. Since A1,k, A2,k are increasing, B1,k, B2,k

are increasing, too. Furthermore, since by [1, Theorem A.3.2] the process X
has no predictable jumps, it follows from [1, Theorem A.3.5] that B1,k, B2,k are
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continuous. Thus B1,k, B2,k are increasing CAFs of M such that Ai,k − Bi,k,
i = 1, 2, are martingales under Px for q.e. x ∈ E. Let bi

k, i = 1, 2, denote the
Revuz measure of Bi,k. Since for q.e. x ∈ E, ExAi,k

t = ExBi,k
t for t ≥ 0, from

(3.11), (3.12) and [2, Lemma 5.4] we conclude that

b1
k(E) ≤ ‖1{u>k}fu‖L1(E;m) + ‖1{u>k} · μ‖TV ,

b2
k(E) ≤ ‖1{u≤−k}fu‖L1(E;m) + ‖1{u≤−k} · μ‖TV .

Hence b1
k, b2

k ∈ M0,b(E) and ‖b1
k‖TV → 0, ‖b2

k‖TV → 0 as k → ∞. Combining
(3.7) with (3.10) we obtain

Y k
t −Y k

0 = −
∫ t

0

1{−k<Ys−≤k}(fu(Xs) ds+dAμ
s )−(B1,k

t −B2,k
t )+Mk

t (3.13)

with

Mk
t =

∫ t

0

1{−k<Ys−≤k} dMs − (A1,k
t − B1,k

t ) + A2,k
t − B2,k

t .

From (3.13) and the fact that u(Xt) → 0, Px-a.s. as t → ∞ for q.e. x ∈ E it
follows that for q.e. x ∈ E,

Tku(x) = Ex

(∫ ζ

0

(fu(Xt) dt + dAμ
t ) +

∫ ζ

0

dAνk
t

)
(3.14)

with

νk = −1{u/∈(−k,k]}(fu · m + μ) + b1
k − b2

k.

Clearly νk ∈ M0,b(E) and ‖νk‖TV → 0 as k → ∞. By [3, Theorem 4.2] (see
also [2, Proposition 5.9] in the case of regular symmetric forms), Tku ∈ De(E)
for every k > 0. Let λk = fu ·m+μ+νk and let A = Aλk . Since λk ∈ M0,b(E),
R|λk|(x) < ∞ for q.e. x ∈ E. By Fubini’s theorem, for q.e. x ∈ E we have

Rλk(x) − Rαλk(x) = Ex

∫ ∞

0

(1 − e−αt) dAt

= Ex

∫ ∞

0

(∫ t

0

αe−αs ds

)
dAt

= αEx

∫ ∞

0

e−αt

(∫ ∞

t

dAs

)
dt.

By the Markov property the right-hand side of the above equality equals

αEx

∫ ∞

0

e−αt

(∫ ∞

0

d(As ◦ θt)
)

dt = αEx

∫ ∞

0

e−αtEXt

(∫ ∞

0

dAs

)
dt

= αEx

∫ ∞

0

e−αtRλk(Xt) dt

= αRα(Rλk)(x).

Hence

Rλk(x) − Rαλk(x) = αRα(Rλk)(x)
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for q.e. x ∈ E. By (3.14), Tku = Rλk. Therefore from the above generalized
resolvent equation it follows that for every bounded v ∈ D(E) we have

α(Tku − αRα(Tku), v)H = α(Rαλk, v)H . (3.15)

By [4, Theorem 2.13(iii)] the left-hand side of (3.15) converges to E(Tku, v)
as α → ∞. The right-hand side is equal to 〈λk, αR̂αv〉, where R̂α denotes
the resolvent of a Hunt process associated with the form (Ê ,D(E)) defined
as Ê(u, v) = E(v, u), u, v ∈ D(E). Since the functions αR̂αv are bounded uni-
formly in α > 0 and by Propositions I.2.13(ii) and III.3.5 in [4] we may assume
that αR̂αv → ṽ q.e. as α → ∞, the right-hand side of (3.15) converges to 〈λk, ṽ〉
as α → ∞. Thus (3.6) is satisfied for bounded v ∈ D(E). Now assume that v is
bounded, say by l, and v ∈ De(E). Let vn be an approximating sequence for v.
Then Tl(vn) → v m-a.e. and, by [1, Corollary 1.6.3], in (De(E), Ẽ) as n → ∞.
Taking a subsequence if necessary we may assume that Tlvn → ṽ q.e. By what
has already been proved, for n ∈ N we have

E(Tku, Tlvn) = 〈λk, Tlṽn〉.
Letting n → ∞ we get (3.6), which completes the proof of (i).

(ii) If u is a renormalized solution of (1.1) then u is quasi-continuous and
(3.6) is satisfied for all functions v of the form v = Ûν with ν ∈ Ŝ

(0)
00 (E). Hence

〈ν, Tku〉 = E(Tku, Ûν) = 〈fu · m + μ + νk,
˜̂
Uν〉.

Therefore Tku is a solution in the sense of duality (see [3, Section 3.3] or [2,
Section 5] for the definition) of the linear problem

− L(Tku) = fu + μ + νk. (3.16)

By [3, Proposition 3.9] (or [2, Proposition 5.3] in the case of symmetric forms)
Tku is a probabilistic solution of (3.16). In particular (3.14) (with the measure
νk of (3.16)) is satisfied. Since ‖νk‖TV → 0 as k → ∞, there is a subsequence
(still denoted by k) such that

Rνk(x) = Ex

∫ ζ

0

dAνk
t → 0 (3.17)

for m-a.e. x ∈ E. To see this, let us first observe that if μ ∈ S
(0)
0 (E) and ũ ≤ c

μ-a.e., where u = Ûμ, then u ≤ c m-a.e. Indeed, we have

E(u ∧ c, u) = E(u ∧ c, Ûμ) =
∫

E

(ũ ∧ c)μ(dx) =
∫

E

ũ μ(dx) = E(u, u).

Hence

E(u − u ∧ c, u − u ∧ c) = E(u − u ∧ c, u) − E(u − u ∧ c, u ∧ c) ≤ 0, (3.18)

the last inequality being a consequence of [4, Theorem I.4.4] and the fact that
E is a Dirichlet form. By (3.18) and [1, Theorem 1.6.2], u − u ∧ c = 0 m-
a.e., which shows that u ≤ c m-a.e. Since m ∈ S(E), by the 0-order version
of [1, Theorem 2.2.4] (see the comment following [1, Corollary 2.2.2]) there
exists a generalized nest {Fn} such that μn := 1Fn

· m ∈ S
(0)
0 (E) for n ∈ N
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and m(E\ ⋃∞
n=1 Fn) = 0. Let Fn,N = {x ∈ Fn : ˜̂

Uμn(x) ≤ N} and μn,N =

1Fn,N
· μn = 1Fn,N

· m. Then μn,N ∈ S
(0)
0 (E) and ˜̂Uμn,N ≤ ˜̂

Uμn ≤ N μn-
a.e. Therefore by the observation made above, Ûμn,N ≤ N m-a.e., and hence
˜̂Uμn,N ≤ N q.e. Moreover,∫

Fn,N

R|νk|(x)m(dx) = E(R|νk|, Ûμn,N ) = 〈|νk|, ˜̂Uμn,N 〉

≤ ‖νk‖TV ‖Ûμn,N‖∞.

Hence for every n,N ∈ N,

lim
k→∞

∫
Fn,N

R|νk|(x)m(dx) = 0. (3.19)

Since ˜̂
Uμn is q.e. finite, m(Fn\ ⋃∞

N=1 Fn,N ) = m({x ∈ Fn : ˜̂
Uμn(x) = ∞} = 0.

Therefore from (3.19) one can deduce that (3.17) holds for m-a.e. x ∈ Fn for
each n ∈ N. Since m(E \ ⋃∞

n=1 Fn) = 0, we see that (3.17) holds for m-a.e.
x ∈ E. Letting k → ∞ in (3.14) and using (3.17) we conclude that (3.4) holds
true for m-a.e. x ∈ E. In fact, since u and the right-hand side of (3.4) are
quasi-continuous, (3.4) holds for q.e. x ∈ E, which completes the proof. �

To illustrate the utility of Theorem 3.5 we now give some results on
existence and uniqueness of renormalized solutions of (1.1) with f satisfying
the monotonicity condition and mild integrability conditions. To state the
results we will need the following hypotheses.

(E1) f : E × R → R is measurable and y �→ f(x, y) is continuous for every
x ∈ E,

(E2) (f(x, y1) − f(x, y2))(y1 − y2) ≤ 0 for every y1, y2 ∈ R and x ∈ E,
(E3) μ ∈ M0,b(E) and f(·, y) ∈ L1(E;m) for every y ∈ R.

In what follows we assume that (E ,D(E)) satisfies the assumptions of
Theorem 3.5.

Theorem 3.6. Let u1, u2 be renormalized solutions of (1.1) with the data (f1, μ1)
and (f2, μ2), respectively. Assume that μ1 ≤ μ2 and either that f1(x, u1(x)) ≤
f2(x, u1(x)) m-a.e. and f2 satisfies (E2) or f1(x, u2(x)) ≤ f2(x, u2(x)) m-a.e.
and f1 satisfies (E2). Then u1(x) ≤ u2(x) for q.e. x ∈ E.

Proof. Follows from Theorem 3.5 and [2, Proposition 4.9]. �

Corollary 3.7. If (E2) is satisfied then there exists at most one renormalized
solution of (1.1).

Theorem 3.8. Assume (E1)–(E3). Then there exists renormalized solution of
(1.1).

Proof. Follows from Theorem 3.5 and [3, Theorem 3.8, Proposition 3.10] (see
also [2, Theorem 5.14]). �
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We close this section with some general remarks on possible generalization
of our results and on their applicability.

An inspection of the proof of Theorem 3.5 reveals that it only makes use
of some general results from the theory of stochastic processes that are valid
for general semimartingals, some results from [3], which are proved for quasi-
regular forms and the fact that M associated with E in the resolvent sense is
a standard process (the fact that M a Hunt process is not needed). Therefore
the proof of Theorem 3.5 carries over to quasi-regular Dirichlet forms.

By using probabilistic methods one can prove that for many interest-
ing equations there exists a unique probabilistic solution u such that fu ∈
L1(E;m). This can be done for instance for f satisfying (E1)–(E3). For spe-
cific examples of local and nonlocal operators A satisfying our assumptions
see, e.g., [1–4]. Then as in Corollary 3.7 and Theorems 3.8 above, a direct con-
sequence of Theorem 3.5 is that u is a renormalized solution to (1.1), i.e. has
clear analytical meaning, and that u is the unique renormalized solution. On
the other hand, renormalized solutions to (1.1), which are obtained by analyt-
ical methods, automatically have stochastic representation of the form (3.4).
We may then use (3.4) (and the theory of BSDEs; see Remark 3.3) to study
further properties of the solution by probabilistic methods. For instance, prob-
abilistic methods are quite effective in proving comparison results and hence
uniqueness.

It would be desirable to define renormalized solutions for equations with
general bounded measures μ, at least for some classes of nonlocal operators.
Another interesting open problem is to give other equivalent to Definition 3.4
analytical definitions of a solution (like in the local case considered in [7]).

4. Parabolic equations

In this section we assume that the family {B(t), t ∈ [0, T ]} satisfies the as-
sumptions of Sect. 2.2 and E0,T is the time dependent Dirichlet form defined
by (2.6). By Lt we denote the operator associated with B(t) in the sense of
(3.2) and by ∂u

∂t + Lt the operator corresponding to E0,T , i.e. the generator of
the strongly continuous contraction semigroup corresponding to (G0,T

α )α>0.
We consider the Cauchy problem

− ∂u

∂t
− Ltu = fu + μ, u(T ) = ϕ, (4.1)

where ϕ : E → R is a measurable function such that δ{T} ⊗ ϕ · m ∈ R(E0,T ),
μ ∈ R(E0,T ), f : [0, T ]×E ×R → R is measurable function and fu = f(·, ·, u).

In what follows we maintain the notation of Sect. 2.2 and the second part
of Sect. 2.3 concerning time dependent forms and associated Markov processes.
In particular, M is a Markov process associated with E and ζτ is defined by
(2.8). By abuse of notation, in this section

〈μ, u〉 =
∫

E0,T

u(z)μ(dz)
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for u : E0,T → R and μ ∈ R(E0,T ).
We will say that a Borel measurable function u on E0,T is quasi-càdlàg

if for q.e. z ∈ E0,T the process t �→ u(Xt) is càdlàg on [0, T − τ(0)], Pz-a.s.

Definition 4.1. Let δ{T} ⊗ϕ ·m ∈ R(E0,T ), μ ∈ R(E0,T ). We say that a quasi-
càdlàg function u : E0,T → R is a probabilistic solution to (4.1) if fu · m1 ∈
R(E0,T ) and for q.e. z ∈ E0,T ,

u(z) = Ez

(
ϕ(Xζτ

) +
∫ ζτ

0

fu(Xt) dt +
∫ ζτ

0

dAμ
t

)
. (4.2)

Remark 4.2. Let ϕ, fu, μ be as in the above definition. Then by [18, Proposition
3.4] the right-hand side of (4.2) is a quasi-càdlàg function of z. Therefore the
quasi-càdlàg requirement on u in the above definition can be omitted.

(ii) From the proof of [18, Theorem 5.8] it follows that if u is a proba-
bilistic solution to (4.1) then there is an adapted process M such that M is a
martingale under Pz for q.e. z ∈ E0,T and

Yt = ϕ(Xζτ
) +

∫ ζτ

t

f(Xs, Ys) ds +
∫ ζτ

t

dAμ
s −

∫ ζτ

t

dMs, t ∈ [0, ζτ ], Pz-a.s.

(4.3)
for q.e. z ∈ E0,T , where Yt = u(Xt), t ≥ 0.

Remark 4.3. (i) Let ν = δ{T} ⊗ ϕ · m. If ϕ ∈ L1(E;m) then ν ∈ R(E0,T ).
(ii) One can check that Aν

t = 1[T−τ(0),∞]∩{T>τ(0)}(t)ϕ(Xζτ
), t ≥ 0, for ν

defined in (i) (see the beginning of the proof of [18, Proposition 3.4]).
Hence

Ezϕ(Xζτ
) = Ez

∫ ζτ

0

dAν
t .

Our definition of a renormalized solution is similar to [17, Definition 4.1].

Definition 4.4. Let ϕ ∈ L1(E;m), μ ∈ M0,b(E0,T ). We say that a measurable
function u : E0,T → R is a renormalized solution of (4.1) if

(a) u is quasi-càdlàg, fu ∈ L1(E0,T ;m1) and Tku ∈ V0,T for every k > 0,
(b) there exists a sequence {λk} ⊂ M0,b(E0,T ) such that ‖λk‖TV → 0 as

k → ∞ and for every k ∈ N and every bounded v ∈ W0,

E0,T (Tku, v) = (Tkϕ, v(T ))H + 〈fu · m + μ, ṽ〉 + 〈νk, ṽ〉. (4.4)

Theorem 4.5. Assume that ϕ ∈ L1(E;m), μ ∈ M0,b(E0,T ).

(i) If u is a probabilistic solution of (4.1) and fu ∈ L1(E0,T ;m1) then u is a
renormalized solution of (4.1).

(ii) If u is a renormalized solution of (4.1) then u is a probabilistic solution
of (4.1).

Proof. (i) Let u be a probabilistic solution of (4.1). For k > 0 put

Y k
t = Tku(Xt), t ≥ 0.
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By Remark 4.2 there is a martingale M such that (4.3) is satisfied. As in the
proof of Theorem 3.5, applying the Meyer–Itô formula we show that for k > 0,

Y k
t − Y k

0 =
∫ t

0

1{−k<Ys−≤k} dYs − (A1,k
t − A2,k

t ) (4.5)

for some increasing processes A1,k, A2,k such that

EzA
1,k
ζτ

≤ Ez(ϕ − ϕ ∧ k)(Xζτ
) + Ez

∫ ζτ

0

1{Ys−>k}(fu(Xs) ds + dAμ
s ) (4.6)

and

EzA
2,k
ζτ

≤ −Ez((ϕ + k) ∧ 0)(Xζτ
) − Ez

∫ ζτ

0

1{Ys−≤−k}(fu(Xs) ds + dAμ
s )

(4.7)
for q.e. z ∈ E1. Hence EzA

i,k
ζτ

< ∞ for q.e. z ∈ E0,T . From this and [1, Theorem
A.3.16] it follows that there is a positive increasing AF Bi,k of M such that
Bi,k is the compensator of Ai,k under Pz for q.e. z ∈ E0,T . In particular,

EzA
i,k
t = EzB

i,k
t , t ≥ 0, i = 1, 2 (4.8)

for q.e. z ∈ E0,T . Since Aμ is predictable, there exists a sequence {Tn} of
predictable stopping times exhausting the jumps of Aμ, i.e.

{ΔA �= 0} =
⋃
n≥1

[Tn], [Tn] ∩ [Tm] = ∅, n �= m,

where [Tn] denotes the graph of Tn. Let Aμ,c denote the continuous part of Aμ

and let Aμ,d = Aμ − Aμ,c. We have

Ez

∫ ζτ

0

1{Ys−>k} dAμ
s = Ez

∫ ζτ

0

1{Ys−>k} dAμ,c
s + Ez

∫ ζτ

0

1{Ys−>k} dAμ,d
s

= Ez

∫ ζτ

0

1{u(Xs)+Δu(Xs)>k} dAμ,c
s

+
∑
n≥1

Ez1{u(XTn )+Δu(XTn )>k} ΔAμ
Tn

. (4.9)

Since the filtration {Ft, t ≥ 0} is quasi-left continuous (see [26, Proposition
IV.4.2]), Δu(XTn

) = ΔAμ
Tn

by Theorem A.3.6 in [1]. On the other hand, by
[24, Theorem 16.8], there exists a Borel function a : E0,T → R such that
ΔAμ

t = a(Xt−), t > 0, Pz-a.s. for q.e. z ∈ E0,T . From this and the fact that X
is quasi-left continuous it follows that Δu(XTn

) = a(XTn
). By this and (4.9),

Ez

∫ ζτ

0

1{Ys−>k} dAμ
s = Ez

∫ ζτ

0

1{u(Xs)+a(Xs)>k} dAμ
s . (4.10)

Analogously to (4.10) we show that

Ez

∫ ζτ

0

1{Ys−≤−k} dAμ
s = Ez

∫ ζτ

0

1{u(Xs)+a(Xs)≤−k} dAμ
s . (4.11)
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Combining (4.6)–(4.8) with (4.10), (4.11) we get

EzB
1,k
ζτ

≤ Ez

(
1{ϕ>k}ϕ(Xζτ

) +
∫ ζτ

0

1{u(Xs)>k}fu(Xs) ds

+
∫ ζτ

0

1{(u+a)(Xs)>k}dAμ
s

)
(4.12)

and

EzB
2,k
ζτ

≤ −Ez

(
1{ϕ<−k}ϕ(Xζτ

) +
∫ ζτ

0

1{u(Xs)≤−k}fu(Xs) ds

+
∫ ζτ

0

1{(u+a)(Xs)≤−k}dAμ
s

)
(4.13)

for q.e. z ∈ E0,T . By [1, Theorem A.3.2] the jumps of M occur in totally
inaccessible stopping times, while the jumps of Bi,k in stopping times which
are not totally inaccessible since Bi,k is predictable. Therefore M and Bi,k

have no common discontinuities, and hence Bi,k is a positive natural AF of
M. Let bi

k, i = 1, 2, denote the Revuz measure of Bi,k. From (4.12), (4.13),
Remark 4.2 and [18, Proposition 3.13] we conclude that

b1
k(E0,T ) ≤ ‖1{ϕ>k}ϕ‖L1(E;m) + ‖fu‖L1(E0,T ;m1) + ‖1{u+a>k} · μ‖TV ,

b2
k(E0,T ) ≤ ‖1{ϕ<−k}ϕ‖L1(E;m) + ‖fu‖L1(E0,T ;m1) + ‖1{u+a≤−k} · μ‖TV .

Hence b1
k, b2

k ∈ M0,b(E0,T ) and ‖b1
k‖TV → 0, ‖b2

k‖TV → 0 as k → ∞. Combin-
ing (4.3) with (4.5) we see that

Y k
t − Y k

0 = −
∫ t

0

1{−k<Yt≤k}fu(Xs) ds

−
∫ t

0

1{−k<Yt−≤k} dAμ
s − (B1,k

t − B2,k
t ) + Mk

t

with

Mk
t =

∫ t

0

1{−k<Ys−≤k} dMs − (A1,k
t − B1,k

t ) + A2,k
t − B2,k

t .

By the above and the definition of the measures b1
k, b2

k we have

Tku(z) = Ez

(
Tkϕ(Xζτ

) +
∫ ζτ

0

1{−k<Yt≤k}fu(Xt) dt

+
∫ ζτ

0

1{−k<Yt−≤k} dAμ
t +

∫ ζτ

0

d(Ab1k
t − A

b2k
t )

)
.

From this and (4.10), (4.11) we obtain

Tku(z) = Ez

(
Tkϕ(Xζτ

) +
∫ ζτ

0

(fu(Xt) dt + dAμ
t ) +

∫ ζτ

0

dAνk
t

)
(4.14)

with

νk = −1{u/∈(−k,k]}fu · m − 1{u+a/∈(−k,k]} · μ + b1
k − b2

k.
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By what has already been proved, νk ∈ M0,b(E0,T ) and ‖νk‖TV → 0 as
k → ∞. Moreover, by [18, Theorem 3.12], Tku ∈ V0,T , so what is left is to
show that (4.4) is satisfied. We shall show that (4.4) follows from (4.14) by
the same method as in elliptic case (see the proof of the fact that (3.6) follows
from (3.14)). Let λk = δ{T} ⊗ ϕ · m + fu · m + μ + νk and let A = Aλk . By
Fubini’s theorem,

R0,T λk(z) − R0,T
α λk(z) = Ez

∫ ζτ

0

(1 − e−αt) dAt

= Ez

∫ ζτ

0

(∫ t

0

αe−αs ds

)
dAt

= αEz

∫ ζτ

0

e−αt

(∫ ζτ

t

dAs

)
dt

for q.e. z ∈ E0,T . Using the definition of ζτ and the fact that A is an AF of M
one can check that Aζτ

−At = (Aζτ
−A0)◦ θt. Therefore applying the Markov

property shows that

R0,T λk(z) − R0,T
α λk(z) = αEz

∫ ζτ

0

e−αtEXt

(∫ ζτ

0

dAs

)
dt

= αR0,T
α (R0,T λk)(z)

for q.e. z ∈ E0,T . Since by Remarks 4.3 and (4.14), Tku = R0,T λk, it follows
from the above equation that

α(Tku − αR0,T
α (Tku), v)H0,T

= α(R0,T
α λk, v)H0,T

(4.15)

for every bounded v ∈ W0. Since the left-hand side of (4.15) is equal to
E0,T (αG0,T

α Tku, v), it converges to E0,T (Tku, v) as α → ∞. Let R̂0,T
α denote

the resolvent associated with the dual form Ê0,T . By [20, Corollary III.3.8] ap-
plied to the functions αR̂0,T

α v we may assume that αR̂0,T
α v converges to ṽ q.e.

as α → ∞. It follows that the right-hand side of (4.15) converges to 〈λk, ṽ〉 as
α → ∞. Therefore letting α → ∞ in (4.15) we obtain (4.4), which completes
the proof of (i).

(ii) Let η ∈ L2(E0,T ;m1) be a bounded non-negative function. Then
Ĝ0,T η ∈ W0 and

E0,T (Tku, Ĝ0,T η) = (Tku, η)H0,T
.

From this and (4.4) it follows that Tku is a solution in the sense of duality (see
[18, Section 4] for the definition) of the linear problem(

− ∂

∂t
− Lt

)
Tku = fu + μ + νk, Tku(T ) = Tkϕ, (4.16)

so by [18, Corollary 4.2] Tku is a probabilistic solution of the above equation.
Therefore (4.14) (with the measure νk of (4.16)) is satisfied. Since ‖νk‖TV → 0
and for every Borel set F ⊂ E0,T such that m(F ) < ∞ we have

(R0,T |νk|,1F )H0,T
= 〈|νk|, ˆ̃G0,T1F 〉 ≤ T‖νk‖TV ,
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one can find a subsequence (still denoted by k) such that R0,T νk(z) → 0 as
k → ∞ for m1-a.e. z ∈ E0,T . Therefore letting k → ∞ in (4.14) we show that
(4.2) holds true for m1-a.e. z ∈ E0,T , and hence for q.e. z ∈ E0,T , because u
and the right-hand side of (4.2) are quasi-continuous. �

Remark 4.6. One can show that the function u + a appearing in (4.12) and
(4.13) is equal quasi everywhere to the precise version of u (for the notion of
a precise version of a parabolic potential see [27]).

We now illustrate the applicability of Theorem 4.5. Let us consider the
following hypotheses.

(P1) u �→ f(t, x, u) is continuous for every (t, x) ∈ E0,T .
(P2) There is α ∈ R such that (f(t, x, y) − f(t, x, y′))(y − y′) ≤ α|y − y′|2 for

every (t, x) ∈ E0,T and y, y′ ∈ R.
(P3) μ ∈ M0,b(E0,T ) and f(·, y) ∈ L1(E0,T ;m1) for every y ∈ R.

Theorem 4.7. Let ui be renormalized solution of (4.1) with terminal condition
ϕi, and right-hand side (f i, μi), i = 1, 2. If ϕ1 ≤ ϕ2 m1-a.e., μ1 ≤ μ2 and
either f1 satisfies (P2) and f1

u2
≤ f2

u2
m1-a.e. or f2 satisfies (P2) and f1

u1
≤

f2
u1

m1-a.e., then u1(z) ≤ u2(z) for q.e. z ∈ E0,T .

Proof. Follows from Theorem 4.5 and [18, Corollary 5.9]. �

Corollary 4.8. If (P2) is satisfied then there exists at most one renormalized
solution of (4.1).

Theorem 4.9. Assume (P1)–(P3). Then there exists renormalized solution of
(4.1).

Proof. Follows from Theorem 4.5 and [18, Theorem 5.8, Proposition 5.10]. �

The results of [18] used in the proof of Theorem 4.5 can be generalized to
quasi-regular time dependent Dirichlet forms (see [18, Remark 4.4]). Moreover,
if the forms B(t), t ∈ [0, T ], are quasi-regular, then by [20, Theorem IV.2.2]
there exists a special standard process M properly associated in the resolvent
sense with the time dependent form determined by {B(t), t ∈ [0, T ]}. Since
one can check that the results from the theory of stochastic processes used in
the proof of Theorem 4.5 hold true for such process M, Theorem 4.5 can be
extended to quasi-regular time dependent Dirichlet forms.
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Śniadeckich 8
00-956 Warszawa
Poland
e-mail: tomas@mat.umk.pl



1934 T. Klimsiak and A. Rozkosz NoDEA

Tomasz Klimsiak and Andrzej Rozkosz
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń
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