67 research outputs found
TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death
Self-aggregation of transforming growth factor β (TGF-β)1-induced antiapoptotic factor (TIAF1) is known in the nondemented human hippocampus, and the aggregating process may lead to generation of amyloid β (Aβ) for causing neurodegeneration. Here, we determined that overexpressed TIAF1 exhibits as aggregates together with Smad4 and Aβ in the cancer stroma and peritumor capsules of solid tumors. Also, TIAF1/Aβ aggregates are shown on the interface between brain neural cells and the metastatic cancer cell mass. TIAF1 is upregulated in developing tumors, but may disappear in established metastatic cancer cells. Growing neuroblastoma cells on the extracellular matrices from other cancer cell types induced production of aggregated TIAF1 and Aβ. In vitro induction of TIAF1 self-association upregulated the expression of tumor suppressors Smad4 and WW domain-containing oxidoreductase (WOX1 or WWOX), and WOX1 in turn increased the TIAF1 expression. TIAF1/Smad4 interaction further enhanced Aβ formation. TIAF1 is known to suppress SMAD-regulated promoter activation. Intriguingly, without p53, self-aggregating TIAF1 spontaneously activated the SMAD-regulated promoter. TIAF1 was essential for p53-, WOX1- and dominant-negative JNK1-induced cell death. TIAF1, p53 and WOX1 acted synergistically in suppressing anchorage-independent growth, blocking cell migration and causing apoptosis. Together, TIAF1 shows an aggregation-dependent control of tumor progression and metastasis, and regulation of cell death
Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis _ state of the art
Fibrosis represents a major global disease burden, yet a potent antifibrotic compound is still not in sight. Part of the explanation for this situation is the difficulties that both academic laboratories and research and development departments in the pharmaceutical industry have been facing in re-enacting the fibrotic process in vitro for screening procedures prior to animal testing. Effective in vitro characterization of antifibrotic compounds has been hampered by cell culture settings that are lacking crucial cofactors or are not holistic representations of the biosynthetic and depositional pathway leading to the formation of an insoluble pericellular collagen matrix. In order to appreciate the task which in vitro screening of antifibrotics is up against, we will first review the fibrotic process by categorizing it into events that are upstream of collagen biosynthesis and the actual biosynthetic and depositional cascade of collagen I. We point out oversights such as the omission of vitamin C, a vital cofactor for the production of stable procollagen molecules, as well as the little known in vitro tardy procollagen processing by collagen C-proteinase/BMP-1, another reason for minimal collagen deposition in cell culture. We review current methods of cell culture and collagen quantitation vis-à-vis the high content options and requirements for normalization against cell number for meaningful data retrieval. Only when collagen has formed a fibrillar matrix that becomes cross-linked, invested with ligands, and can be remodelled and resorbed, the complete picture of fibrogenesis can be reflected in vitro. We show here how this can be achieved. A well thought-out in vitro fibrogenesis system represents the missing link between brute force chemical library screens and rational animal experimentation, thus providing both cost-effectiveness and streamlined procedures towards the development of better antifibrotic drugs
Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine
Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.Peer reviewe
Practical aspects of meteorology and oceanography for mariners: A guide for the perplexed
This paper aims to review and summarize the practical aspects of meteorology and oceanography for navigation, highlighting their influence on shiphandling. It is a review for: gathering, in a summarized way, some useful information for mariners, oceanographers, coastal managers, maritime students and maritime engineers; raising important topics for discussion about the theme; and identifying shortcomings that need more research. Aspects of navigation in Brazilian waters, specifically METÁREA V, are introduced as an example, bringing to light, when applicable, the practical aspects for shallow and restricted waters navigation. The parameters analysed were: clouds, rain, smog, fog, breeze, winds, waves, tides, and coastal and tidal currents. The passage of cold fronts can change winds direction. Also, local winds can overlap the effects of breezes, depending on its intensity. Dense fog, that can reduce visibility to less than 100 m, and rain, which according to its intensity, can reduce visibility to less than 500 m, are examples of some parameters that were checked and are able to reduce visibility when navigating. In addition, were reviewed the concepts of occurrence of rain and squall, and of frontal systems and the expected changes in local weather, pressure and air temperature with their approach. The importance of waves, tides and currents is also verified, especially for shallow and restricted waters navigation. Finally, the authors conclude that the analyses and comprehension of theses parameters are crucial for an efficient and safe navigation, and suggest shortcomings that need more research
- …