3,791 research outputs found

    Inclination-Independent Galaxy Classification

    Full text link
    We present a new method to classify galaxies from large surveys like the Sloan Digital Sky Survey using inclination-corrected concentration, inclination-corrected location on the color-magnitude diagram, and apparent axis ratio. Explicitly accounting for inclination tightens the distribution of each of these parameters and enables simple boundaries to be drawn that delineate three different galaxy populations: Early-type galaxies, which are red, highly concentrated, and round; Late-type galaxies, which are blue, have low concentrations, and are disk dominated; and Intermediate-type galaxies, which are red, have intermediate concentrations, and have disks. We have validated our method by comparing to visual classifications of high-quality imaging data from the Millennium Galaxy Catalogue. The inclination correction is crucial to unveiling the previously unrecognized Intermediate class. Intermediate-type galaxies, roughly corresponding to lenticulars and early spirals, lie on the red sequence. The red sequence is therefore composed of two distinct morphological types, suggesting that there are two distinct mechanisms for transiting to the red sequence. We propose that Intermediate-type galaxies are those that have lost their cold gas via strangulation, while Early-type galaxies are those that have experienced a major merger that either consumed their cold gas, or whose merger progenitors were already devoid of cold gas (the ``dry merger'' scenario).Comment: Accepted for publication in ApJ. 7 pages in emulateap

    High redshift AGNs from the 1Jy catalogue and the magnification bias

    Full text link
    We have found a statistically significant (99.1 \%) excess of red (O−E>2O-E>2) galaxies with photographic magnitudes E<19.5E<19.5, O<21O< 21 taken from the APM Sky Catalogue around z∼1z \sim 1 radiosources from the 1Jy catalogue. The amplitude, scale and dependence on galaxy colours of the observed overdensity are consistent with its being a result of the magnification bias caused by the weak gravitational lensing of large scale structures at redshift z≈0.2−0.4z \approx 0.2-0.4 and are hardly explained by other causes, as obscuration by dust.Comment: uuencoded file containing 3 ps files: the main text, a table and a figure. To appear in ApJ Letter

    Abundant dust found in intergalactic space

    Get PDF
    Galactic dust constitutes approximately half of the elements more massive than helium produced in stellar nucleosynthesis. Notwithstanding the formation of dust grains in the dense, cool atmospheres of late-type stars, there still remain huge uncertainties concerning the origin and fate of galactic stardust. In this paper, we identify the intergalactic medium (i.e. the region between gravitationally-bound galaxies) as a major sink for galactic dust. We discover a systematic shift in the colour of background galaxies viewed through the intergalactic medium of the nearby M81 group. This reddening coincides with atomic, neutral gas previously detected between the group members. The dust-to-HI mass ratio is high (1/20) compared to that of the solar neighborhood (1/120) suggesting that the dust originates from the centre of one or more of the galaxies in the group. Indeed, M82, which is known to be ejecting dust and gas in a starburst-driven superwind, is cited as the probable main source.Comment: 5 pages, 3 figures, 1 table. ApJ Letters in pres

    The Serendipitous Discovery of a Group or Cluster of young Galaxies at z=2.40 in Deep Hubble Space Telescope WFPC2 Images

    Full text link
    We report the serendipitous discovery of a group or cluster of young galaxies at z≃z\simeq2.40 in a 24-orbit HST/WFPC2 exposure of the field around the weak radio galaxy 53W002. Potential cluster members were identified on ground-based narrow-band redshifted Lyα\alpha images and confirmed via spectroscopy. In addition to the known weak radio galaxy 53W002 at z=2.390, two other objects were found to have excess narrow-band Lyα\alpha emission at z≃z\simeq2.40. Both have been spectroscopically confirmed, and one clearly contains a weak AGN. They are located within one arcminute of 53W002, or ∼0.23h100−1\sim0.23h_{100}^{-1}Mpc (qoq_o=0.5) at z≃z\simeq2.40, which is the physical scale of a group or small cluster of galaxies. Profile fitting of the WFPC2 images shows that the objects are very compact, with scale lengths ≃\simeq0\farcs 1 (≃0.39h100−1\simeq0.39h_{100}^{-1}kpc), and are rather faint (luminosities < L*), implying that they may be sub-galactic sized objects. We discuss these results in the context of galaxy and cluster evolution and the role that weak AGN may play in the formation of young galaxies.Comment: Accepted for publication in The Astrophysical Journal (Letters). 13 pages of gzip compressed and uuencoded PS. Figures are available at http://www.phys.unsw.edu.au/~spd/bib.htm

    A log-quadratic relation for predicting supermassive black hole masses from the host bulge Sersic index

    Full text link
    We reinvestigate the correlation between black hole mass and bulge concentration. With an increased galaxy sample, updated estimates of galaxy distances, black hole masses, and Sersic indices `n' - a measure of concentration - we perform a least-squares regression analysis to obtain a relation suitable for the purpose of predicting black hole masses in other galaxies. In addition to the linear relation, log(M_bh) = 7.81(+/-0.08) + 2.69(+/-0.28)[log(n/3)] with epsilon_(intrin)=0.31 dex, we investigated the possibility of a higher order M_bh-n relation, finding the second order term in the best-fitting quadratic relation to be inconsistent with a value of zero at greater than the 99.99% confidence level. The optimal relation is given by log(M_bh) = 7.98(+/-0.09) + 3.70(+/-0.46)[log(n/3)] - 3.10(+/-0.84)[log(n/3)]^2, with epsilon_(intrin)=0.18 dex and a total absolute scatter of 0.31 dex. Extrapolating the quadratic relation, it predicts black holes with masses of ~10^3 M_sun in n=0.5 dwarf elliptical galaxies, compared to ~10^5 M_sun from the linear relation, and an upper bound on the largest black hole masses in the local universe, equal to 1.2^{+2.6}_{-0.4}x10^9 M_sun}. In addition, we show that the nuclear star clusters at the centers of low-luminosity elliptical galaxies follow an extrapolation of the same quadratic relation. Moreover, we speculate that the merger of two such nucleated galaxies, accompanied by the merger and runaway collision of their central star clusters, may result in the late-time formation of some supermassive black holes. Finally, we predict the existence of, and provide equations for, a relation between M_bh and the central surface brightness of the host bulge

    A scanning tunnelling microscopy study of C and N adsorption phases on the vicinal Ni(100) surfaces Ni(810) and Ni(911)

    Get PDF
    The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and 011¯ step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2–4 layers high are more typical. STM atomic-scale images show the (2×2)pg ‘clock’ reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2×2) structure, most readily reconciled with a ‘rumpling’ reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1×1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [011] step direction

    Phase transformation in Si from semiconducting diamond to metallic beta-Sn phase in QMC and DFT under hydrostatic and anisotropic stress

    Get PDF
    Silicon undergoes a phase transition from the semiconducting diamond phase to the metallic beta-Sn phase under pressure. We use quantum Monte Carlo calculations to predict the transformation pressure and compare the results to density functional calculations employing the LDA, PBE, PW91, WC, AM05, PBEsol and HSE06 exchange-correlation functionals. Diffusion Monte Carlo predicts a transition pressure of 14.0 +- 1.0 GPa slightly above the experimentally observed transition pressure range of 11.3 to 12.6 GPa. The HSE06 hybrid functional predicts a transition pressure of 12.4 GPa in excellent agreement with experiments. Exchange-correlation functionals using the local-density approximation and generalized-gradient approximations result in transition pressures ranging from 3.5 to 10.0 GPa, well below the experimental values. The transition pressure is sensitive to stress anisotropy. Anisotropy in the stress along any of the cubic axes of the diamond phase of silicon lowers the equilibrium transition pressure and may explain the discrepancy between the various experimental values as well as the small overestimate of the quantum Monte Carlo transition pressure

    The Luminosity Function of Nearby Galaxy Clusters II: Redshifts and Luminosity Function for Galaxies in the Region of the Centaurus Cluster

    Full text link
    We acquired spectra for a random sample of galaxies within a 0.83 square degree region centered on the core of the Centaurus cluster. Radial velocities were obtained for 225 galaxies to limiting magnitudes of V < 19.5. Of the galaxies for which velocities were obtained, we find 35% to be member galaxies. Of the 78 member galaxies, magnitudes range from 11.8 < V < 18.5 (-21.6 < M_{V} < -14.9 for H_o = 70 km s^-1 Mpc^-1) with a limiting central surface brightness of \mu_o < 22.5 mag arcsec^-2. We constructed the cluster galaxy luminosity function by using these spectroscopic results to calculate the expected fraction of cluster members in each magnitude bin. The faint-end slope of the luminosity function using this method is shallower than the one obtained using a statistical method to correct for background galaxy contamination. We also use the spectroscopy results to define surface brightness criteria to establish membership for the full sample. Using these criteria, we find a luminosity function very similar to the one constructed with the statistical background correction. For both, we find a faint-end slope alpha ~ -1.4. Adjusting the surface brightness membership criteria we find that the data are consistent with a faint-end slope as shallow as -1.22 or as steep as -1.50. We describe in this paper some of the limitations of using these methods for constructing the galaxy luminosity function.Comment: 16 pages, 12 figures, accepted by A

    Two-phase galaxy evolution: the cosmic star formation histories of spheroids and discs

    Get PDF
    From two very simple axioms: (1) that active galactic nucleus activity traces spheroid formation, and (2) that the cosmic star formation history is dominated by spheroid formation at high redshift, we derive simple expressions for the star formation histories of spheroids and discs, and their implied metal enrichment histories. Adopting a Baldry–Glazebrook initial mass function we use these relations and apply PEGASE.2 to predict the z = 0 cosmic spectral energy distributions (CSEDs) of spheroids and discs. The model predictions compare favourably to the dust-corrected CSED recently reported by the Galaxy And Mass Assembly team from the far-ultraviolet through to the K band. The model also provides a reasonable fit to the total stellar mass contained within spheroid and disc structures as recently reported by the Millennium Galaxy Catalogue team. Three interesting inferences can be made following our axioms: (1) there is a transition redshift at z ≈ 1.7 at which point the Universe switches from what we refer to as ‘hot mode evolution’ (i.e. spheroid formation/growth via mergers and/or collapse) to what we term ‘cold mode evolution’ (i.e. disc formation/growth via gas infall and minor mergers); (2) there is little or no need for any pre-enrichment prior to the main phase of star formation; (3) in the present Universe mass loss is fairly evenly balanced with star formation holding the integrated stellar mass density close to a constant value. The model provides a simple prediction of the energy output from spheroid and disc projenitors, the build-up of spheroid and disc mass and the mean metallicity enrichment of the Universe
    • …
    corecore