3,851 research outputs found
A three-dimensional turbulent boundary layer undergoing transverse strain and streamwise pressure gradient
Results from an experimental investigation designed to provide data on both mean and turbulence quantities in the axisymmetric, swirling boundary layer (with and without pressure gradient) flowing over a stationary cylinder downstreams of a spinning cylindrical section are presented. The pressure gradient was introduced into the flow field by a 25.4 mm-high, forward-facing, circular step mounted on the stationary cylinder, the step height being nearly equal to the thickness of the approaching boundary layer. All the measurements were made at a nominal upstream reference Reynolds number of 2.4 x 10 to the 6th power/m (corresponding to an upstream reference velocity of 36 to 37 m/sec) with the rotation of the spinner set to make its peripheral speed equal the reference velocity. The data reported included measurements of surface pressure and the mean surface shear-stress vector taken with a miniature, directional, surface-fence gage. These measurements were supplemented by oil-flow visualization studies of the stationary cylinder. The data indicates that the streamwise pressure gradient controls the development of the streamwise component of wall shear, but leaves the peripheral component of wall shear practically unaffected
Can the Future Influence the Present?
One widely accepted model of classical electrodynamics assumes that a moving charged particle produces both retarded and advanced fields. This formulation first appeared at least 75 years ago. It was popularized in the 1940\u27s by work of Wheeler and Feynman. But the most fundamental question associated with the model has remained unanswered: When (if ever) does the two-body problem have a unique solution? The present paper gives an answer in one special case. Imagine two identical charged particles alone in the universe moving symmetrically along the x axis. One is at x(t) and the other is at −x(t). Their motion is then governed by a system of functional differential equations involving both retarded and advanced arguments. This system together with the Newtonian initial data x(0)=x0\u3e0 and x′(0)=0 has a unique solution for all time provided x0 is sufficiently large. Perhaps the existence and uniqueness proof given for this special case will pave the way for more general results on this curious two-body problem
A scanning tunnelling microscopy study of C and N adsorption phases on the vicinal Ni(100) surfaces Ni(810) and Ni(911)
The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and 011¯ step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2–4 layers high are more typical. STM atomic-scale images show the (2×2)pg ‘clock’ reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2×2) structure, most readily reconciled with a ‘rumpling’ reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1×1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [011] step direction
An earth pole-sitter using hybrid propulsion
In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft
Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet
High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small
Recommended from our members
Does visual flicker phase at gamma frequency modulate neural signal propagation and stimulus selection?
Oscillatory synchronization of neuronal populations has been proposed to play a role in perceptual integration and attentional processing. However, some conflicting evidence has been found with respect to its causal relevance for sensory processing, particularly when using flickering visual stimuli with the aim of driving oscillations. We tested psychophysically whether the relative phase of gamma frequency flicker (60 Hz) between stimuli modulates well-known facilitatory lateral interactions between collinear Gabor patches (Experiment 1) or crowding of a peripheral target by irrelevant distractors (Experiment 2). Experiment 1 assessed the impact of suprathreshold Gabor flankers on detection of a near-threshold central Gabor target (“Lateral interactions paradigm”). The flanking stimuli could flicker either in phase or in anti-phase with each other. The typical facilitation of target detection was found with collinear flankers, but this was unaffected by flicker phase. Experiment 2 employed a “crowding” paradigm, where orientation discrimination of a peripheral target Gabor patch is disrupted when surrounded by irrelevant distractors. We found the usual crowding effect, which declined with spatial separation, but this was unaffected by relative flicker phase between target and distractors at all separations. These results imply that externally driven manipulations of gamma frequency phase cannot modulate perceptual integration in vision
Shifting attention in viewer- and object-based reference frames after unilateral brain injury
The aims of the present study were to investigate the respective roles that object- and viewer-based reference frames play in reorienting visual attention, and to assess their influence after unilateral brain injury. To do so, we studied 16 right hemisphere injured (RHI) and 13 left hemisphere injured (LHI) patients. We used a cueing design that manipulates the location of cues and targets relative to a display comprised of two rectangles (i.e., objects). Unlike previous studies with patients, we presented all cues at midline rather than in the left or right visual fields. Thus, in the critical conditions in which targets were presented laterally, reorienting of attention was always from a midline cue. Performance was measured for lateralized target detection as a function of viewer-based (contra- and ipsilesional sides) and object-based (requiring reorienting within or between objects) reference frames. As expected, contralesional detection was slower than ipsilesional detection for the patients. More importantly, objects influenced target detection differently in the contralesional and ipsilesional fields. Contralesionally, reorienting to a target within the cued object took longer than reorienting to a target in the same location but in the uncued object. This finding is consistent with object-based neglect. Ipsilesionally, the means were in the opposite direction. Furthermore, no significant difference was found in object-based influences between the patient groups (RHI vs. LHI). These findings are discussed in the context of reference frames used in reorienting attention for target detection
The Faint End Slopes Of Galaxy Luminosity Functions In The COSMOS 2-Square Degree Field
We examine the faint-end slope of the rest-frame V-band luminosity function
(LF), with respect to galaxy spectral type, of field galaxies with redshift
z<0.5, using a sample of 80,820 galaxies with photometric redshifts in the
Cosmic Evolution Survey (COSMOS) field. For all galaxy spectral types combined,
the LF slope, alpha, ranges from -1.24 to -1.12, from the lowest redshift bin
to the highest. In the lowest redshift bin (0.02<z<0.1), where the magnitude
limit is M(V) ~ -13, the slope ranges from ~ -1.1 for galaxies with early-type
spectral energy distributions (SEDs), to ~ -1.9 for galaxies with
low-extinction starburst SEDs. In each galaxy SED category (Ell, Sbc, Scd/Irr,
and starburst), the faint-end slopes grow shallower with increasing redshift;
in the highest redshift bin (0.4<z<0.5), the slope is ~ -0.5 and ~ -1.3 for
early-types and starbursts respectively. The steepness of alpha at lower
redshift could be qualitatively explained by large numbers of faint dwarf
galaxies, perhaps of low surface brightness, which are not detected at higher
redshifts.Comment: 24 pages including 5 figures, accepted to ApJ
Phase transformation in Si from semiconducting diamond to metallic beta-Sn phase in QMC and DFT under hydrostatic and anisotropic stress
Silicon undergoes a phase transition from the semiconducting diamond phase to
the metallic beta-Sn phase under pressure. We use quantum Monte Carlo
calculations to predict the transformation pressure and compare the results to
density functional calculations employing the LDA, PBE, PW91, WC, AM05, PBEsol
and HSE06 exchange-correlation functionals. Diffusion Monte Carlo predicts a
transition pressure of 14.0 +- 1.0 GPa slightly above the experimentally
observed transition pressure range of 11.3 to 12.6 GPa. The HSE06 hybrid
functional predicts a transition pressure of 12.4 GPa in excellent agreement
with experiments. Exchange-correlation functionals using the local-density
approximation and generalized-gradient approximations result in transition
pressures ranging from 3.5 to 10.0 GPa, well below the experimental values. The
transition pressure is sensitive to stress anisotropy. Anisotropy in the stress
along any of the cubic axes of the diamond phase of silicon lowers the
equilibrium transition pressure and may explain the discrepancy between the
various experimental values as well as the small overestimate of the quantum
Monte Carlo transition pressure
Argumentation in school science : Breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning
The value of argumentation in science education has become internationally recognised and has been the subject of many research studies in recent years. Successful introduction of argumentation activities in learning contexts involves extending teaching goals beyond the understanding of facts and concepts, to include an emphasis on cognitive and metacognitive processes, epistemic criteria and reasoning. The authors focus on the difficulties inherent in shifting a tradition of teaching from one dominated by authoritative exposition to one that is more dialogic, involving small-group discussion based on tasks that stimulate argumentation. The paper builds on previous research on enhancing the quality of argument in school science, to focus on how argumentation activities have been designed, with appropriate strategies, resources and modelling, for pedagogical purposes. The paper analyses design frameworks, their contexts and lesson plans, to evaluate their potential for enhancing reasoning through foregrounding the processes of argumentation. Examples of classroom dialogue where teachers adopt the frameworks/plans are analysed to show how argumentation processes are scaffolded. The analysis shows that several layers of interpretation are needed and these layers need to be aligned for successful implementation. The analysis serves to highlight the potential and limitations of the design frameworks
- …