10 research outputs found
Human Labor Pain Is Influenced by the Voltage-Gated Potassium Channel KV6.4 Subunit.
By studying healthy women who do not request analgesia during their first delivery, we investigate genetic effects on labor pain. Such women have normal sensory and psychometric test results, except for significantly higher cuff pressure pain. We find an excess of heterozygotes carrying the rare allele of SNP rs140124801 in KCNG4. The rare variant KV6.4-Met419 has a dominant-negative effect and cannot modulate the voltage dependence of KV2.1 inactivation because it fails to traffic to the plasma membrane. In vivo, Kcng4 (KV6.4) expression occurs in 40% of retrograde-labeled mouse uterine sensory neurons, all of which express KV2.1, and over 90% express the nociceptor genes Trpv1 and Scn10a. In neurons overexpressing KV6.4-Met419, the voltage dependence of inactivation for KV2.1 is more depolarized compared with neurons overexpressing KV6.4. Finally, KV6.4-Met419-overexpressing neurons have a higher action potential threshold. We conclude that KV6.4 can influence human labor pain by modulating the excitability of uterine nociceptors.MCL, DKM, DW, and CGW acknowledge funding from Addenbrooke’s Charitable Trust and the NIHR Cambridge Biomedical Research Centre. MN was funded by the Wellcome Trust (200183/Z/15/Z); JH and ESS by a Rosetrees Postdoctoral Grant (A1296) and the BBSRC (BB/R006210/1); GC and ESS by Versus Arthritis Grants (RG21973); VBL and FR by the Wellcome Trust (106262/Z/14/Z and 106263/Z/14/Z) and a joint MRC programme within the Metabolic Diseases Unit (MRC_MC_UU_12012/3). EF, GI and CB were funded by the Cambridge NIHR Biomedical Research Centre Integrative Genomics theme and LAP by a BBSRC-funded studentship (BB/M011194/1)
Recommended from our members
Mutations in phospholipase C eta-1 ( PLCH1 ) are associated with holoprosencephaly
Funder: NIHR Cambridge Biomedical Research centreBackground: Holoprosencephaly is a spectrum of developmental disorder of the embryonic forebrain in which there is failed or incomplete separation of the prosencephalon into two cerebral hemispheres. To date, dominant mutations in sonic hedgehog (SHH) pathway genes are the predominant Mendelian causes, and have marked interfamilial and intrafamilial phenotypical variabilities. Methods: We describe two families in which offspring had holoprosencephaly spectrum and homozygous predicted-deleterious variants in phospholipase C eta-1 (PLCH1). Immunocytochemistry was used to examine the expression pattern of PLCH1 in human embryos. We used SHH as a marker of developmental stage and of early embryonic anatomy. Results: In the first family, two siblings had congenital hydrocephalus, significant developmental delay and a monoventricle or fused thalami with a homozygous PLCH1 c.2065C>T, p.(Arg689*) variant. In the second family, two siblings had alobar holoprosencephaly and cyclopia with a homozygous PLCH1 c.4235delA, p.(Cys1079ValfsTer16) variant. All parents were healthy carriers, with no holoprosencephaly spectrum features. We found that the subcellular localisation of PLCH1 is cytoplasmic, but the p.(Cys1079ValfsTer16) variant was predominantly nuclear. Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome, all tissues producing or responding to SHH. Furthermore, the embryonic subcellular localisation of PLCH1 was exclusively cytoplasmic, supporting protein mislocalisation contributing to the pathogenicity of the p.(Cys1079ValfsTer16) variant. Conclusion: Our data support the contention that PLCH1 has a role in prenatal mammalian neurodevelopment, and deleterious variants cause a clinically variable holoprosencephaly spectrum phenotype
Recommended from our members
Mutations in phospholipase C eta-1 ( PLCH1 ) are associated with holoprosencephaly
Funder: NIHR Cambridge Biomedical Research centreBackground: Holoprosencephaly is a spectrum of developmental disorder of the embryonic forebrain in which there is failed or incomplete separation of the prosencephalon into two cerebral hemispheres. To date, dominant mutations in sonic hedgehog (SHH) pathway genes are the predominant Mendelian causes, and have marked interfamilial and intrafamilial phenotypical variabilities. Methods: We describe two families in which offspring had holoprosencephaly spectrum and homozygous predicted-deleterious variants in phospholipase C eta-1 (PLCH1). Immunocytochemistry was used to examine the expression pattern of PLCH1 in human embryos. We used SHH as a marker of developmental stage and of early embryonic anatomy. Results: In the first family, two siblings had congenital hydrocephalus, significant developmental delay and a monoventricle or fused thalami with a homozygous PLCH1 c.2065C>T, p.(Arg689*) variant. In the second family, two siblings had alobar holoprosencephaly and cyclopia with a homozygous PLCH1 c.4235delA, p.(Cys1079ValfsTer16) variant. All parents were healthy carriers, with no holoprosencephaly spectrum features. We found that the subcellular localisation of PLCH1 is cytoplasmic, but the p.(Cys1079ValfsTer16) variant was predominantly nuclear. Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome, all tissues producing or responding to SHH. Furthermore, the embryonic subcellular localisation of PLCH1 was exclusively cytoplasmic, supporting protein mislocalisation contributing to the pathogenicity of the p.(Cys1079ValfsTer16) variant. Conclusion: Our data support the contention that PLCH1 has a role in prenatal mammalian neurodevelopment, and deleterious variants cause a clinically variable holoprosencephaly spectrum phenotype
Evidence of a genetic background predisposing to complex regional pain syndrome type 1.
BackgroundComplex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition.MethodsExome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n=34) compared with population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a replication cohort (n=50). Gene expression of peripheral blood macrophages was assessed.ResultsIn the discovery cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The replication cohort confirmed this finding. In a chronic pain cohort, these alleles were not overexpressed. In total, 25 out of 84 (29.8%) patients with CRPS-1 expressed a rare allele. The SNPs were rs41289586 in ANO10, rs28360457 in P2RX7, rs1126930 in PRKAG1 and rs80308281 in SLC12A9. Males were more likely than females to have a rare SNP allele, 8 out of 14 (57.1%) vs 17 out of 70 (24.3%) (Fisher's p=0.023). ANO10, P2RX7, PRKAG1 and SLC12A9 were all expressed in macrophages from healthy human controls.ConclusionA single SNP in each of the genes ANO10, P2RX7, PRKAG1 and SLC12A9 was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1
Perturbation par l'éthanol de la plasticité synaptique reliée aux sous-unités GluN2A et GluN2B dans l'hippocampe chez le rongeur : implication des HDAC2 et HSF2
Alcohol (EtOH) remains one of the most consumed substances of abuse in France among adolescents and adults EtOH consumption, inducing learning deficits through disturbances of the NMDA-dependent form of synaptic plasticity (long term potentiation, LTP and long-term depression, LTD), the cellular signal responsible for learning and memory, notably into the hippocampus, involved in memory formation in mammals. Importantly, induction of NMDA-dependent synaptic plasticity relies on the subunit composition of the NMDA receptor (GluN2A and GluN2B) while mechanisms of genome regulation such as epigenetic or some transcription factors may have important role in determining the quality of synaptic plasticity signals. However, the molecular mechanisms by which EtOH disrupts NMDA-dependent synaptic plasticity are still unclear. During my thesis work, I tested the hypothesis that NMDA-dependent synaptic plasticity is disrupted by EtOH through the modulation of the involvement of GluN2B and GluN2A subunits of the receptor whatever the type of EtOH exposure, either acute in young adult (binge-drinking like model) rodents or chronic in adult rodents. I further tested the involvement of epigenetic and the role of HSF2, a transcription factor in the modifications induced by EtOH. Using pharmacological tools and field potential recordings in CA1 area of hippocampal slices from adolescent rats and adult mice, I found that both acute and chronic ethanol exposure increased field NMDA excitatory post synaptic potential (fNMDA-EPSP) sensitivity to a GluN2B antagonist while sensitivity to GluN2A antagonist was decreased. In adolescent rats, these modifications were accompanied with a lower LTD without affecting LTP and with memory impairment. Interestingly, inhibition of enzymes responsible for chromatin deacetylation (HDAC) in binge like adolescent rat model, prevents the EtOH effects in learning performance associated with a correction of the GluN2A/GluN2B balance and LTD. Concerning the role of HSF2, I found that before chronic EtOH consumption, fNMDA-EPSPs of HSF2 KO adult mice lack LTD and showed the opposite sensitivity to GluN2A and GluN2B antagonists compared to WT mice. Chronic EtOH exposure in HSF2 KO mice induced different adaptations than in WT animals. Altogether, my thesis work show that, 1) regardless the type of EtOH exposure, the hippocampus neuronal network adapt via changes in the balance between GluN2A and GluN2B subunits leading to LTD reduction and learning impairment; 2) these EtOH-induced changes in fNMDA-EPSPs involved epigenetic processes and 3) some transcription factors, affecting basal conditions of the role for GluN2A/GluN2B balance determines the capacity to respond to EtOH exposureL'alcool (EtOH) est une des substances d'abus les plus consommées en France chez les adolescents comme chez les adultes. La consommation d'EtOH induit des déficits mnésiques en perturbant les phénomènes de plasticité synaptique de type potentialisation à long terme (PLT) et dépression à long terme (DLT) dépendants du récepteur NMDA (PLTNMDA et DLTNMDA), et qui constituent la base cellulaire des apprentissages et de la mémoire, notamment au niveau de l'hippocampe. La composition en sous-unités GluN2A et GluN2B du récepteur NMDA peut influencer l'induction de ces deux formes de plasticité synaptique selon le modèle théorique de Bienenstock et al. (1982). De plus, la plasticité synaptique est sous l'influence de mécanismes épigénétiques et/ou de facteurs de transcription. A l'heure actuelle, les mécanismes cellulaires qui sous-tendent la perturbation de la plasticité synaptique suite à la consommation d'EtOH demeurent mal compris. Durant ma thèse, j'ai testé l'hypothèse que les perturbations de la plasticité synaptique dépendante du NMDA impliqueraient une modulation des sous-unités GluN2A et GluN2B dans un modèle de binge drinking-like chez le rat jeune adulte et dans un modèle d'alcoolisation chronique chez des souris adultes. Afin de comprendre les mécanismes sous-tendant ces perturbations, j’ai étudié l'implication des facteurs épigénétiques et le rôle d'un facteur de transcription de la famille des heat shock factor, HSF2. Pour cela, j'ai utilisé la technique d'enregistrement de potentiel de champs somatique et dendritique (potentiel postsynaptique excitateur NMDA ; PPSE-NMDA) dans l'aire CA1 de tranches d'hippocampe. De manière intéressante, nos résultats montrent que les deux types d'alcoolisation, aigue et chronique, augmentent la sensibilité du PPSE-NMDA à un antagoniste de la sous-unité GluN2B alors que la sensibilité à l'antagoniste de la sous-unité GluN2A diminue. Chez le rat jeune adulte, ces modifications sont accompagnées d'une forte réduction de la DLTNMDA et d'un déficit d'apprentissage (test de reconnaissance de nouvel objet). Dans ce modèle, l'inhibition de l'activité des enzymes HDACs, responsables de la désacétylation des histones, prévient l'ensemble des effets de l’EtOH (sensibilité pharmacologique du PPSE-NMDA, DLTNMDA et apprentissage). Concernant HSF2 et avant toute alcoolisation, des souris adultes hsf-/- présentent une absence de DLTNMDA accompagnée d'une plus grande sensibilité du PPSE-NMDA à un antagoniste GluN2B comparé à des souris sauvages. L'exposition chronique à l'EtOH induit chez les souris sauvages, une abolition de la DLTNMDA accompagnée d'une augmentation de la sensibilité du PPSE-NMDA à un antagoniste GluN2B et à une diminution de la sensibilité de ce signal à un antagoniste GluN2A. En revanche, les souris hsf-/- ne présentent aucune de ces modifications. Ainsi, l'ensemble de mes travaux de thèse montre que quel que soit le type d'alcoolisation, aigue ou chronique, mais aussi l'espèce animale utilisée, rat ou souris, l'EtOH induit des adaptations du réseau hippocampique qui consiste en une augmentation de la sensibilité du PPSE-NMDA à un antagoniste GluN2B et en une diminution de sa sensibilité à un antagoniste GluN2A ; modifications qui accompagnent une abolition de la DLT. Cette réponse globale à l'EtOH mettrait en jeu des facteurs épigénétiques modulant l'état d'acétylation de l'ADN et des facteurs transcriptionnels de type heat shoc
Perturbation par l'éthanol de la plasticité synaptique reliée aux sous-unités GluN2A et GluN2B dans l'hippocampe chez le rongeur : implication des HDAC2 et HSF2
Alcohol (EtOH) remains one of the most consumed substances of abuse in France among adolescents and adults EtOH consumption, inducing learning deficits through disturbances of the NMDA-dependent form of synaptic plasticity (long term potentiation, LTP and long-term depression, LTD), the cellular signal responsible for learning and memory, notably into the hippocampus, involved in memory formation in mammals. Importantly, induction of NMDA-dependent synaptic plasticity relies on the subunit composition of the NMDA receptor (GluN2A and GluN2B) while mechanisms of genome regulation such as epigenetic or some transcription factors may have important role in determining the quality of synaptic plasticity signals. However, the molecular mechanisms by which EtOH disrupts NMDA-dependent synaptic plasticity are still unclear. During my thesis work, I tested the hypothesis that NMDA-dependent synaptic plasticity is disrupted by EtOH through the modulation of the involvement of GluN2B and GluN2A subunits of the receptor whatever the type of EtOH exposure, either acute in young adult (binge-drinking like model) rodents or chronic in adult rodents. I further tested the involvement of epigenetic and the role of HSF2, a transcription factor in the modifications induced by EtOH. Using pharmacological tools and field potential recordings in CA1 area of hippocampal slices from adolescent rats and adult mice, I found that both acute and chronic ethanol exposure increased field NMDA excitatory post synaptic potential (fNMDA-EPSP) sensitivity to a GluN2B antagonist while sensitivity to GluN2A antagonist was decreased. In adolescent rats, these modifications were accompanied with a lower LTD without affecting LTP and with memory impairment. Interestingly, inhibition of enzymes responsible for chromatin deacetylation (HDAC) in binge like adolescent rat model, prevents the EtOH effects in learning performance associated with a correction of the GluN2A/GluN2B balance and LTD. Concerning the role of HSF2, I found that before chronic EtOH consumption, fNMDA-EPSPs of HSF2 KO adult mice lack LTD and showed the opposite sensitivity to GluN2A and GluN2B antagonists compared to WT mice. Chronic EtOH exposure in HSF2 KO mice induced different adaptations than in WT animals. Altogether, my thesis work show that, 1) regardless the type of EtOH exposure, the hippocampus neuronal network adapt via changes in the balance between GluN2A and GluN2B subunits leading to LTD reduction and learning impairment; 2) these EtOH-induced changes in fNMDA-EPSPs involved epigenetic processes and 3) some transcription factors, affecting basal conditions of the role for GluN2A/GluN2B balance determines the capacity to respond to EtOH exposureL'alcool (EtOH) est une des substances d'abus les plus consommées en France chez les adolescents comme chez les adultes. La consommation d'EtOH induit des déficits mnésiques en perturbant les phénomènes de plasticité synaptique de type potentialisation à long terme (PLT) et dépression à long terme (DLT) dépendants du récepteur NMDA (PLTNMDA et DLTNMDA), et qui constituent la base cellulaire des apprentissages et de la mémoire, notamment au niveau de l'hippocampe. La composition en sous-unités GluN2A et GluN2B du récepteur NMDA peut influencer l'induction de ces deux formes de plasticité synaptique selon le modèle théorique de Bienenstock et al. (1982). De plus, la plasticité synaptique est sous l'influence de mécanismes épigénétiques et/ou de facteurs de transcription. A l'heure actuelle, les mécanismes cellulaires qui sous-tendent la perturbation de la plasticité synaptique suite à la consommation d'EtOH demeurent mal compris. Durant ma thèse, j'ai testé l'hypothèse que les perturbations de la plasticité synaptique dépendante du NMDA impliqueraient une modulation des sous-unités GluN2A et GluN2B dans un modèle de binge drinking-like chez le rat jeune adulte et dans un modèle d'alcoolisation chronique chez des souris adultes. Afin de comprendre les mécanismes sous-tendant ces perturbations, j’ai étudié l'implication des facteurs épigénétiques et le rôle d'un facteur de transcription de la famille des heat shock factor, HSF2. Pour cela, j'ai utilisé la technique d'enregistrement de potentiel de champs somatique et dendritique (potentiel postsynaptique excitateur NMDA ; PPSE-NMDA) dans l'aire CA1 de tranches d'hippocampe. De manière intéressante, nos résultats montrent que les deux types d'alcoolisation, aigue et chronique, augmentent la sensibilité du PPSE-NMDA à un antagoniste de la sous-unité GluN2B alors que la sensibilité à l'antagoniste de la sous-unité GluN2A diminue. Chez le rat jeune adulte, ces modifications sont accompagnées d'une forte réduction de la DLTNMDA et d'un déficit d'apprentissage (test de reconnaissance de nouvel objet). Dans ce modèle, l'inhibition de l'activité des enzymes HDACs, responsables de la désacétylation des histones, prévient l'ensemble des effets de l’EtOH (sensibilité pharmacologique du PPSE-NMDA, DLTNMDA et apprentissage). Concernant HSF2 et avant toute alcoolisation, des souris adultes hsf-/- présentent une absence de DLTNMDA accompagnée d'une plus grande sensibilité du PPSE-NMDA à un antagoniste GluN2B comparé à des souris sauvages. L'exposition chronique à l'EtOH induit chez les souris sauvages, une abolition de la DLTNMDA accompagnée d'une augmentation de la sensibilité du PPSE-NMDA à un antagoniste GluN2B et à une diminution de la sensibilité de ce signal à un antagoniste GluN2A. En revanche, les souris hsf-/- ne présentent aucune de ces modifications. Ainsi, l'ensemble de mes travaux de thèse montre que quel que soit le type d'alcoolisation, aigue ou chronique, mais aussi l'espèce animale utilisée, rat ou souris, l'EtOH induit des adaptations du réseau hippocampique qui consiste en une augmentation de la sensibilité du PPSE-NMDA à un antagoniste GluN2B et en une diminution de sa sensibilité à un antagoniste GluN2A ; modifications qui accompagnent une abolition de la DLT. Cette réponse globale à l'EtOH mettrait en jeu des facteurs épigénétiques modulant l'état d'acétylation de l'ADN et des facteurs transcriptionnels de type heat shoc
Ethanol induces synaptic plasticity disturbances linked to GluN2A and GluN2B subunits in hippocampus in rodents : involvement of HDAC2 and HSF2
L'alcool (EtOH) est une des substances d'abus les plus consommées en France chez les adolescents comme chez les adultes. La consommation d'EtOH induit des déficits mnésiques en perturbant les phénomènes de plasticité synaptique de type potentialisation à long terme (PLT) et dépression à long terme (DLT) dépendants du récepteur NMDA (PLTNMDA et DLTNMDA), et qui constituent la base cellulaire des apprentissages et de la mémoire, notamment au niveau de l'hippocampe. La composition en sous-unités GluN2A et GluN2B du récepteur NMDA peut influencer l'induction de ces deux formes de plasticité synaptique selon le modèle théorique de Bienenstock et al. (1982). De plus, la plasticité synaptique est sous l'influence de mécanismes épigénétiques et/ou de facteurs de transcription. A l'heure actuelle, les mécanismes cellulaires qui sous-tendent la perturbation de la plasticité synaptique suite à la consommation d'EtOH demeurent mal compris. Durant ma thèse, j'ai testé l'hypothèse que les perturbations de la plasticité synaptique dépendante du NMDA impliqueraient une modulation des sous-unités GluN2A et GluN2B dans un modèle de binge drinking-like chez le rat jeune adulte et dans un modèle d'alcoolisation chronique chez des souris adultes. Afin de comprendre les mécanismes sous-tendant ces perturbations, j’ai étudié l'implication des facteurs épigénétiques et le rôle d'un facteur de transcription de la famille des heat shock factor, HSF2. Pour cela, j'ai utilisé la technique d'enregistrement de potentiel de champs somatique et dendritique (potentiel postsynaptique excitateur NMDA ; PPSE-NMDA) dans l'aire CA1 de tranches d'hippocampe. De manière intéressante, nos résultats montrent que les deux types d'alcoolisation, aigue et chronique, augmentent la sensibilité du PPSE-NMDA à un antagoniste de la sous-unité GluN2B alors que la sensibilité à l'antagoniste de la sous-unité GluN2A diminue. Chez le rat jeune adulte, ces modifications sont accompagnées d'une forte réduction de la DLTNMDA et d'un déficit d'apprentissage (test de reconnaissance de nouvel objet). Dans ce modèle, l'inhibition de l'activité des enzymes HDACs, responsables de la désacétylation des histones, prévient l'ensemble des effets de l’EtOH (sensibilité pharmacologique du PPSE-NMDA, DLTNMDA et apprentissage). Concernant HSF2 et avant toute alcoolisation, des souris adultes hsf-/- présentent une absence de DLTNMDA accompagnée d'une plus grande sensibilité du PPSE-NMDA à un antagoniste GluN2B comparé à des souris sauvages. L'exposition chronique à l'EtOH induit chez les souris sauvages, une abolition de la DLTNMDA accompagnée d'une augmentation de la sensibilité du PPSE-NMDA à un antagoniste GluN2B et à une diminution de la sensibilité de ce signal à un antagoniste GluN2A. En revanche, les souris hsf-/- ne présentent aucune de ces modifications. Ainsi, l'ensemble de mes travaux de thèse montre que quel que soit le type d'alcoolisation, aigue ou chronique, mais aussi l'espèce animale utilisée, rat ou souris, l'EtOH induit des adaptations du réseau hippocampique qui consiste en une augmentation de la sensibilité du PPSE-NMDA à un antagoniste GluN2B et en une diminution de sa sensibilité à un antagoniste GluN2A ; modifications qui accompagnent une abolition de la DLT. Cette réponse globale à l'EtOH mettrait en jeu des facteurs épigénétiques modulant l'état d'acétylation de l'ADN et des facteurs transcriptionnels de type heat shockAlcohol (EtOH) remains one of the most consumed substances of abuse in France among adolescents and adults EtOH consumption, inducing learning deficits through disturbances of the NMDA-dependent form of synaptic plasticity (long term potentiation, LTP and long-term depression, LTD), the cellular signal responsible for learning and memory, notably into the hippocampus, involved in memory formation in mammals. Importantly, induction of NMDA-dependent synaptic plasticity relies on the subunit composition of the NMDA receptor (GluN2A and GluN2B) while mechanisms of genome regulation such as epigenetic or some transcription factors may have important role in determining the quality of synaptic plasticity signals. However, the molecular mechanisms by which EtOH disrupts NMDA-dependent synaptic plasticity are still unclear. During my thesis work, I tested the hypothesis that NMDA-dependent synaptic plasticity is disrupted by EtOH through the modulation of the involvement of GluN2B and GluN2A subunits of the receptor whatever the type of EtOH exposure, either acute in young adult (binge-drinking like model) rodents or chronic in adult rodents. I further tested the involvement of epigenetic and the role of HSF2, a transcription factor in the modifications induced by EtOH. Using pharmacological tools and field potential recordings in CA1 area of hippocampal slices from adolescent rats and adult mice, I found that both acute and chronic ethanol exposure increased field NMDA excitatory post synaptic potential (fNMDA-EPSP) sensitivity to a GluN2B antagonist while sensitivity to GluN2A antagonist was decreased. In adolescent rats, these modifications were accompanied with a lower LTD without affecting LTP and with memory impairment. Interestingly, inhibition of enzymes responsible for chromatin deacetylation (HDAC) in binge like adolescent rat model, prevents the EtOH effects in learning performance associated with a correction of the GluN2A/GluN2B balance and LTD. Concerning the role of HSF2, I found that before chronic EtOH consumption, fNMDA-EPSPs of HSF2 KO adult mice lack LTD and showed the opposite sensitivity to GluN2A and GluN2B antagonists compared to WT mice. Chronic EtOH exposure in HSF2 KO mice induced different adaptations than in WT animals. Altogether, my thesis work show that, 1) regardless the type of EtOH exposure, the hippocampus neuronal network adapt via changes in the balance between GluN2A and GluN2B subunits leading to LTD reduction and learning impairment; 2) these EtOH-induced changes in fNMDA-EPSPs involved epigenetic processes and 3) some transcription factors, affecting basal conditions of the role for GluN2A/GluN2B balance determines the capacity to respond to EtOH exposur
Recommended from our members
Understanding the genetic basis of congenital insensitivity to pain.
INTRODUCTION OR BACKGROUND: Congenital insensitivity to pain (CIP) is caused by extremely rare Mendelian genetic disorders. CIP individuals demonstrate the unexpectedly severe consequences of painlessness. Although only a small number of causative conditions and genes are known, most have led to profound insights into human nociception. CIP gene discovery is catalyzing the manufacture of completely new classes of analgesics, and these are needed as alternatives to synthetic highly potent opioids. SOURCES OF DATA: Pubmed.gov peer-reviewed journal articles and reviews. AREAS OF AGREEMENT: The importance of nerve growth factor-tropomyosin receptor kinase A (NGF-TRKA) signalling for nociceptor genesis and subsequent pain sensing.New analgesics can be generated from knowledge of the NGF-TRKA nociceptor pathway.Increased susceptibility to Staphylococcus aureus infection is a consequence of deficient NGF-TRKA signalling.Mutations in the voltage-gated sodium channels SCN9A and SCN11A can cause congenital painlessness, and in contradistinction, other mutations can cause episodic neuropathic pain. SCN9A/Nav1.7 is an analgesic target. SCN11A/Nav1.9 is unlikely to be an analgesic target.There are further Mendelian causes of painlessness to be discovered. AREAS OF CONTROVERSY: Which NGF-TRKA intracellular signalling pathways operate in nociceptor development and which in post-natal pain sensing?Why have no clinically effective Nav1.7 antagonist been generated? SCN9A-CIP causes analgesia, at least in part, through endogenous opioids.Why do all CIP phenotypes involve a complete loss of all types of nociception? AREAS TIMELY FOR DEVELOPING RESEARCH: PRDM12 as an analgesic target.Discovery of the function and analgesic potential of new CIP genes.Can NGF-TRKA be used in the treatment of S. aureus?Wellcome Trust
Cambridge NIHR Biomedical Research Centr
Recommended from our members
Evidence of a genetic background predisposing to Complex Regional Pain Syndrome type 1
Background
Complex regional pain syndrome type 1 (CRPS-1) is a rare, disabling, and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared to those who do not have the condition.
Methods
Exome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a Discovery Cohort of well-characterised patients with chronic CRPS-1 (n=34) compared to population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a Replication Cohort (n=50). Gene expression of peripheral blood macrophages was assessed.
Results
In the Discovery Cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The Replication Cohort confirmed this finding. In a Chronic Pain Cohort these alleles were not overexpressed. In total 25/84 (29.8%) of patients with CRPS-1 expressed a rare allele. The SNPs were; rs41289586 in ANO10, rs28360457 in P2RX7, rs1126930 in PRKAG1, and rs80308281 in SLC12A9. Males were more likely than females to have a rare SNP allele, 8/14 (57.1%) versus 17/70 (24.3%), (Fischer’s p=0.023). ANO10, P2RX7, PRKAG1 and SLC12A9 were all expressed in macrophages from healthy human controls.
Conclusion
A single SNP in each of the genes ANO10, P2RX7, PRKAG1 and SLC12A9 was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1
Recommended from our members
Evidence of a genetic background predisposing to complex regional pain syndrome type 1
Peer reviewed: TrueAcknowledgements: We thank the CRPS-UK Registry from which we obtained our study cohort and the study individuals for their enthusiastic participation. MCL, MSN and ID were supported by the Wellcome Trust (200183/Z/15/Z). AG was supported by the Pain Relief Foundation, Liverpool. YP was supported by the Indonesian Endowment Fund for Education (LPDP 201908222915477). SSS, NS, DKM, MCHC and CGW; this research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. SSS, ID, AD and CGW are members of the UKRI Advanced Pain Discovery Platform.Funder: Pain Relief Foundation, LiverpoolBackgroundComplex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition.MethodsExome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n=34) compared with population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a replication cohort (n=50). Gene expression of peripheral blood macrophages was assessed.ResultsIn the discovery cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The replication cohort confirmed this finding. In a chronic pain cohort, these alleles were not overexpressed. In total, 25 out of 84 (29.8%) patients with CRPS-1 expressed a rare allele. The SNPs were rs41289586 inANO10, rs28360457 inP2RX7, rs1126930 inPRKAG1and rs80308281 inSLC12A9. Males were more likely than females to have a rare SNP allele, 8 out of 14 (57.1%) vs 17 out of 70 (24.3%) (Fisher’s p=0.023).ANO10,P2RX7,PRKAG1andSLC12A9were all expressed in macrophages from healthy human controls.ConclusionA single SNP in each of the genesANO10, P2RX7, PRKAG1andSLC12A9was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1.</jats:sec