5 research outputs found

    Corrections atmosphériques pour capteurs à trÚs haute résolution spatiale en zone littorale

    Get PDF
    The coastal area accumulates major socio-economic and environmental issues. To understand the dynamics of the associated systems and predict their evolution, particularly in a context of strong human pressure and climate change, it is necessary to rely on long-termobservation systems providing robust data. By its spatial extent, ocean color remote sensing has demonstrated in recent years its strong potential for the observation of the coast and tends to become a central component of observation systems. However, very high resolution sensors (hereafter named THRS), suitable for small-scale observation of the physical and biogeochemical processes that characterize the dynamics of the coastal zone, still have strong limitations requiring important technical and scientific developments. As part of my PhD, I will focus on the atmospheric correction issues. The latter represent a key step of the signal processing in ocean color remote sensing. They are used to extract the marine signal from the total signal measured the sensor through an onboard radiometer. This signal, which only represents about 10% of the total signal, is used to measure, from inversion models, physical and biogeochemical parameters characterizing the marine and continental aquatic systems. However, atmospheric correction methods developed for ocean missions are often inadequate or ineffective for THRS sensors due to lower instrumental characteristics (low spectral resolution and low signal to noise ratio). My work was first to develop an innovative atmospheric correction method based on the elaboration of a local aerosol model, the ISAC model. This aerosol model is the result of the study of variations of the optical and microphysical properties of aerosol over Arcachon, based on four years of AERONET data. This method has later been applied to Landsat 8 images and the results were evaluated with other standard methods. Then, a comparison with field data was used to validate and demonstrate the good performance of the method. Finally, the ISAC’s corrected images were used used to evaluate the performance of an inversion model to extract bathymetry.La zone littorale concentre des enjeux socio-Ă©conomiques et environnementaux majeurs. Pour comprendre la dynamique des systĂšmes associĂ©s et prĂ©voir leurs Ă©volutions, en particulier dans un contexte de forte pression anthropique et de changement climatique, il est nĂ©cessaire de s’appuyer sur des systĂšmes d’observation pĂ©rennes fournissant des donnĂ©es robustes. Par son emprise spatiale, la tĂ©lĂ©dĂ©tection de la couleur de l’eau a dĂ©montrĂ© ces derniĂšres annĂ©es son fort potentiel pour l’observation du littoral et tend Ă  devenir une composante centrale des systĂšmes d’observation. NĂ©anmoins, les capteurs Ă  trĂšs haute rĂ©solution spatiale (notĂ© par la suite THRS), adaptĂ©s Ă  l’observation petite Ă©chelle des processus physiques et bio-gĂ©ochimiques qui caractĂ©risent la dynamique de la zone littorale, prĂ©sentent encore de fortes limitations nĂ©cessitant des dĂ©veloppements techniques et scientifiques importants. Dans le cadre de cette thĂšse, je vais m’intĂ©resser au problĂšme des corrections atmosphĂ©riques. Ces derniĂšres reprĂ©sentent une Ă©tape clĂ© du traitement du signal en tĂ©lĂ©dĂ©tection de la couleur de l’eau. Elles permettent d’extraire du signal total mesurĂ© par un radiomĂštre embarquĂ© sur une plateforme spatiale, le signal marin. Ce signal, qui ne reprĂ©sente qu’environ 10% du signal total, est ensuite utilisĂ© pour mesurer, Ă  partir de modĂšles d’inversion, des paramĂštres physiques et bio-gĂ©ochimiques caractĂ©risant les systĂšmes aquatiques marins et continentaux. Or, les mĂ©thodes de corrections atmosphĂ©riques dĂ©veloppĂ©es pour les missions standards en couleur de l’ocĂ©an sont le plus souvent inadaptĂ©es ou inopĂ©rantes pour les capteurs THRS du fait de caractĂ©ristiques instrumentales moins poussĂ©es (faible rĂ©solution spectrales et faible rapport signal sur bruit). Mon travail a Ă©tĂ© d’abord de dĂ©velopper une mĂ©thode de corrections atmosphĂ©riques innovante basĂ©e sur la construction d’un modĂšle aĂ©rosol local, le modĂšle ISAC. Ce modĂšle aĂ©rosol est le rĂ©sultat de l’étude des variations des propriĂ©tĂ©s optiques et microphysiques des aĂ©rosols sur Arcachon, basĂ©e sur 4 annĂ©es de donnĂ©es AERONET. Cette mĂ©thode a par la suite Ă©tĂ© appliquĂ©e sur des images Landsat 8 et les rĂ©sultats obtenus ont Ă©tĂ© Ă©valuĂ©s avec d’autres mĂ©thodes standards de corrections atmosphĂ©riques. Puis, une comparaison avec des donnĂ©es terrain a permis de valider et de montrer les bonnes performances de la mĂ©thode. Enfin, les images corrigĂ©es avec la mĂ©thode ISAC ont Ă©tĂ© utilisĂ©es afin d’évaluer les performances d’un modĂšle d’inversion permettant d’extraire la bathymĂ©trie

    Atmospheric corrections for high resolution sensors for coastal applications

    No full text
    La zone littorale concentre des enjeux socio-Ă©conomiques et environnementaux majeurs. Pour comprendre la dynamique des systĂšmes associĂ©s et prĂ©voir leurs Ă©volutions, en particulier dans un contexte de forte pression anthropique et de changement climatique, il est nĂ©cessaire de s’appuyer sur des systĂšmes d’observation pĂ©rennes fournissant des donnĂ©es robustes. Par son emprise spatiale, la tĂ©lĂ©dĂ©tection de la couleur de l’eau a dĂ©montrĂ© ces derniĂšres annĂ©es son fort potentiel pour l’observation du littoral et tend Ă  devenir une composante centrale des systĂšmes d’observation. NĂ©anmoins, les capteurs Ă  trĂšs haute rĂ©solution spatiale (notĂ© par la suite THRS), adaptĂ©s Ă  l’observation petite Ă©chelle des processus physiques et bio-gĂ©ochimiques qui caractĂ©risent la dynamique de la zone littorale, prĂ©sentent encore de fortes limitations nĂ©cessitant des dĂ©veloppements techniques et scientifiques importants. Dans le cadre de cette thĂšse, je vais m’intĂ©resser au problĂšme des corrections atmosphĂ©riques. Ces derniĂšres reprĂ©sentent une Ă©tape clĂ© du traitement du signal en tĂ©lĂ©dĂ©tection de la couleur de l’eau. Elles permettent d’extraire du signal total mesurĂ© par un radiomĂštre embarquĂ© sur une plateforme spatiale, le signal marin. Ce signal, qui ne reprĂ©sente qu’environ 10% du signal total, est ensuite utilisĂ© pour mesurer, Ă  partir de modĂšles d’inversion, des paramĂštres physiques et bio-gĂ©ochimiques caractĂ©risant les systĂšmes aquatiques marins et continentaux. Or, les mĂ©thodes de corrections atmosphĂ©riques dĂ©veloppĂ©es pour les missions standards en couleur de l’ocĂ©an sont le plus souvent inadaptĂ©es ou inopĂ©rantes pour les capteurs THRS du fait de caractĂ©ristiques instrumentales moins poussĂ©es (faible rĂ©solution spectrales et faible rapport signal sur bruit). Mon travail a Ă©tĂ© d’abord de dĂ©velopper une mĂ©thode de corrections atmosphĂ©riques innovante basĂ©e sur la construction d’un modĂšle aĂ©rosol local, le modĂšle ISAC. Ce modĂšle aĂ©rosol est le rĂ©sultat de l’étude des variations des propriĂ©tĂ©s optiques et microphysiques des aĂ©rosols sur Arcachon, basĂ©e sur 4 annĂ©es de donnĂ©es AERONET. Cette mĂ©thode a par la suite Ă©tĂ© appliquĂ©e sur des images Landsat 8 et les rĂ©sultats obtenus ont Ă©tĂ© Ă©valuĂ©s avec d’autres mĂ©thodes standards de corrections atmosphĂ©riques. Puis, une comparaison avec des donnĂ©es terrain a permis de valider et de montrer les bonnes performances de la mĂ©thode. Enfin, les images corrigĂ©es avec la mĂ©thode ISAC ont Ă©tĂ© utilisĂ©es afin d’évaluer les performances d’un modĂšle d’inversion permettant d’extraire la bathymĂ©trie.The coastal area accumulates major socio-economic and environmental issues. To understand the dynamics of the associated systems and predict their evolution, particularly in a context of strong human pressure and climate change, it is necessary to rely on long-termobservation systems providing robust data. By its spatial extent, ocean color remote sensing has demonstrated in recent years its strong potential for the observation of the coast and tends to become a central component of observation systems. However, very high resolution sensors (hereafter named THRS), suitable for small-scale observation of the physical and biogeochemical processes that characterize the dynamics of the coastal zone, still have strong limitations requiring important technical and scientific developments. As part of my PhD, I will focus on the atmospheric correction issues. The latter represent a key step of the signal processing in ocean color remote sensing. They are used to extract the marine signal from the total signal measured the sensor through an onboard radiometer. This signal, which only represents about 10% of the total signal, is used to measure, from inversion models, physical and biogeochemical parameters characterizing the marine and continental aquatic systems. However, atmospheric correction methods developed for ocean missions are often inadequate or ineffective for THRS sensors due to lower instrumental characteristics (low spectral resolution and low signal to noise ratio). My work was first to develop an innovative atmospheric correction method based on the elaboration of a local aerosol model, the ISAC model. This aerosol model is the result of the study of variations of the optical and microphysical properties of aerosol over Arcachon, based on four years of AERONET data. This method has later been applied to Landsat 8 images and the results were evaluated with other standard methods. Then, a comparison with field data was used to validate and demonstrate the good performance of the method. Finally, the ISAC’s corrected images were used used to evaluate the performance of an inversion model to extract bathymetry

    Atmospheric correction of multi-spectral littoral images using a PHOTONS/AERONET-based regional aerosol model.

    Get PDF
    25 pagesInternational audienceSpatial resolution is the main instrumental requirement for the multi-spectral optical space missions that address the scientific issues of marine coastal systems. This spatial resolution should be at least decametric. Aquatic color data processing associated with these environments requires specific atmospheric corrections (AC) suitable for the spectral characteristics of high spatial resolution sensors (HRS) as well as the high range of atmospheric and marine optical properties. The objective of the present study is to develop and demonstrate the potential of a ground-based AC approach adaptable to any HRS for regional monitoring and security of littoral systems. The in Situ-based Atmospheric CORrection (SACOR) algorithm is based on simulations provided by a Successive Order of Scattering code (SOS), which is constrained by a simple regional aerosol particle model (RAM). This RAM is defined from the mixture of a standard tropospheric and maritime aerosol type. The RAM is derived from the following two processes. The first process involved the analysis of a 6-year data set composed of aerosol optical and microphysical properties acquired through the ground-based PHOTONS/AERONET network located at Arcachon (France). The second process was related to aerosol climatology using the NOAA hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model. Results show that aerosols have a bimodal particle size distribution regardless of the season and are mainly represented by a mixed coastal continental type. Furthermore, the results indicate that aerosols originate from both the Atlantic Ocean (53.6%) and Continental Europe (46.4%). Based on these results, absorbing biomass burning, urban-industrial and desert dust particles have not been considered although they represent on average 19% of the occurrences. This represents the main current limitation of the RAM. An assessment of the performances of SACOR is then performed by inter-comparing the water-leaving reflectance ( ρw ) retrievals with three different AC methods (ACOLITE, MACCS and 6SV using three different standard aerosol types) using match-ups (N = 8) composed of Landsat-8/Operational Land Imager (OLI) scenes and field radiometric measurements. Results indicate consistency with the SWIR-based ACOLITE method, which shows the best performance, except in the green channel where SACOR matches well with the in-situ data (relative error of 7%). In conclusion, the study demonstrates the high potential of the SACOR approach for the retrieval of ρw . In the future, the method could be improved by using an adaptive aerosol model, which may select the most relevant local aerosol model following the origin of the atmospheric air mass, and could be applied to the latest HRS (Sentinel-2/MSI, SPOT6-7, Pleiades 1A-1B)
    corecore