10 research outputs found

    Engineering of tomato for the sustainable production of ketocarotenoids and its evaluation in aquaculture feed

    Get PDF
    Ketocarotenoids are high-value pigments used commercially across multiple industrial sectors as colorants and supplements. Chemical synthesis using petrochemical-derived precursors remains the production method of choice. Aquaculture is an example where ketocarotenoid supplementation of feed is necessary to achieve product viability. The biosynthesis of ketocarotenoids, such as canthaxanthin, phoenicoxanthin, or astaxanthin in plants is rare. In the present study, complex engineering of the carotenoid pathway has been performed to produce high-value ketocarotenoids in tomato fruit (3.0 mg/g dry weight). The strategy adopted involved pathway extension beyond β-carotene through the expression of the β-carotene hydroxylase (CrtZ) and oxyxgenase (CrtW) from Brevundimonas sp. in tomato fruit, followed by β-carotene enhancement through the introgression of a lycopene β-cyclase (β-Cyc) allele from a Solanum galapagense background. Detailed biochemical analysis, carried out using chromatographic, UV/VIS, and MS approaches, identified the predominant carotenoid as fatty acid (C14:0 and C16:0) esters of phoenicoxanthin, present in the S stereoisomer configuration. Under a field-like environment with low resource input, scalability was shown with the potential to deliver 23 kg of ketocarotenoid/hectare. To illustrate the potential of this “generally recognized as safe” material with minimal, low-energy bioprocessing, two independent aquaculture trials were performed. The plant-based feeds developed were more efficient than the synthetic feed to color trout flesh (up to twofold increase in the retention of the main ketocarotenoids in the fish fillets). This achievement has the potential to create a new paradigm in the renewable production of economically competitive feed additives for the aquaculture industry and beyond

    Heterozygosity for Nuclear Factor One X Affects Hippocampal-Dependent Behaviour in Mice

    Get PDF
    Identification of the genes that regulate the development and subsequent functioning of the hippocampus is pivotal to understanding the role of this cortical structure in learning and memory. One group of genes that has been shown to be critical for the early development of the hippocampus is the Nuclear factor one (Nfi) family, which encodes four site-specific transcription factors, NFIA, NFIB, NFIC and NFIX. In mice lacking Nfia, Nfib or Nfix, aspects of early hippocampal development, including neurogenesis within the dentate gyrus, are delayed. However, due to the perinatal lethality of these mice, it is not clear whether this hippocampal phenotype persists to adulthood and affects hippocampal-dependent behaviour. To address this we examined the hippocampal phenotype of mice heterozygous for Nfix (Nfix(+/-)), which survive to adulthood. We found that Nfix(+/-) mice had reduced expression of NFIX throughout the brain, including the hippocampus, and that early hippocampal development in these mice was disrupted, producing a phenotype intermediate to that of wild-type mice and Nfix(+/-) mice. The abnormal hippocampal morphology of Nfix(-/-) mice persisted to adulthood, and these mice displayed a specific performance deficit in the Morris water maze learning and memory task. These findings demonstrate that the level of Nfix expression during development and within the adult is essential for the function of the hippocampus during learning and memory

    Nuclear Factor One Transcription Factors in CNS Development

    No full text
    Transcription factors are key regulators of central nervous system (CNS) development and brain function. Research in this area has now uncovered a new key player–the nuclear factor one (NFI) gene family. It has been almost a decade since the phenotype of the null mouse mutant for the nuclear factor one A transcription factor was reported. Nfia null mice display a striking brain phenotype including agenesis of the corpus callosum and malformation of midline glial populations needed to guide axons of the corpus callosum across the midline of the developing brain. Besides NFIA, there are three other NFI family members in vertebrates: NFIB, NFIC, and NFIX. Since generation of the Nfia knockout (KO) mice, KO mice for all other family members have been generated, and defects in one or more organ systems have been identified for all four NFI family members (collectively referred to as NFI here). Like the Nfia KO mice, the Nfib and Nfix KO mice also display a brain phenotype, with the Nfib KO forebrain phenotype being remarkably similar to that of Nfia. Over the past few years, studies have highlighted NFI as a key payer in a variety of CNS processes including axonal outgrowth and guidance and glial and neuronal cell differentiation. Here, we discuss the importance and role of NFI in these processes in the context of several CNS systems including the neocortex, hippocampus, cerebellum, and spinal cord at both cellular and molecular levels
    corecore