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Ketocarotenoids are high-value pigments used commercially across multiple 35 

industrial sectors as colorants and supplements. Chemical synthesis using 36 

petrochemical derived precursors remains the production method of choice. 37 

Aquaculture is an example where ketocarotenoid supplementation of feed is 38 

necessary to achieve product viability. The biosynthesis of ketocarotenoids such 39 

as canthaxanthin, phoenicoxanthin or astaxanthin in plants is rare. In the present 40 

study, complex engineering of the carotenoid pathway has been performed to 41 

produce high-value ketocarotenoids in tomato fruit (3.0 mg/g DW). The strategy 42 

adopted involved pathway extension beyond -carotene through the expression of 43 

the -carotene hydroxylase (CrtZ) and oxyxgenase (CrtW) from Brevundimonas 44 

sp. in tomato fruit, followed by -carotene enhancement through the introgression 45 

of a novel lycopene -cyclase (-Cyc) allele from S. galapagense background. 46 

Detailed biochemical analysis, carried using chromatographic, UV/VIS and Mass 47 

Spectrometry approaches identified the predominant carotenoid as fatty acid 48 

(C14:0 and C16:0) esters of phoenicoxanthin, present in the S stereoisomer 49 

configuration. Under a field-like environment with low resource input, scalability 50 

was shown with the potential to deliver 23 kg of ketocarotenoid/hectare. To 51 

illustrate the potential of this GRAS (Generally Recognized as Safe) material with 52 

minimal, low-energy bioprocessing, two independent aquaculture trials were 53 

performed. The plant-based feeds developed were more efficient than the 54 

synthetic feed to color trout flesh (up to 2-fold increase in the retention of the main 55 

ketocarotenoids in the fish fillets). This achievement has the potential to create a 56 

new paradigm in the renewable production of economically competitive feed 57 

additives for the aquaculture industry and beyond.  58 

Keywords: Carotenoids, genetic intervention, tomato, aquaculture. 59 

 60 



Significance Statement 61 

Ketocarotenoids are high-value pigments used in the food and feed industry to 62 

confer color. Aquaculture is a good example where the addition of carotenoids to 63 

the feed is essential for the coloration of trout or salmon flesh and thus product 64 

viability. In this article, complex engineering has been carried out to produce a 65 

new renewable source of ketocarotenoids for use as feed additives. Production in 66 

tomato fruit has enabled the testing of this novel GRAS (Generally Recognized as 67 

Safe) material with low energy minimal bioprocessing in aquaculture trials to 68 

demonstrate production, technical and economic feasibility of the system. This 69 

achievement represents a new potential paradigm in the bioproduction of specialty 70 

and bulk chemicals without our reliance on fossil fuel derived chemical processes.  71 

 72 

Introduction 73 

Carotenoids represent one of the largest classes of pigments found in nature (1), 74 

however only a small number are used commercially. Ketocarotenoids such as 75 

astaxanthin or canthaxanthin are among the highest value carotenoid pigments on the 76 

market (2). These carotenoids possess a characteristic chemical keto moiety on the 4 77 

and/or 4´ position on the -ionone ring and can also exhibit hydroxyl groups on the 3 78 

and 3´ position (Fig. 1). The decoration of the -ionone ring present in cyclic 79 

carotenoids can only be performed by a limited number of enzymes. These enzymes 80 

are promiscuous and thus a myriad of intermediates/products can arise. The best 81 

characterized ketocarotenoid forming enzymes are those from marine bacteria (3).  82 

The predominant commercial use of ketocarotenoids are as feed supplements in 83 

aquaculture and poultry industry to convey aesthetic color and nutritional benefit. 84 

Without these supplements, adequate coloration of fish flesh cannot be achieved and an 85 



economically viable product cannot be obtained (4). In addition, the pigments also 86 

confer beneficial animal husbandry aspects that enable intensification of the industry 87 

(5). It is estimated that 15 to 25% of the total feed costs associated with aquaculture 88 

production are due to the price of the carotenoid feed supplements required.  89 

To date, chemical synthesis has been the production method of choice. Like many such 90 

processes, it is intrinsically linked to the chemical refining of fossil fuels, using by-91 

products as precursors. The procedures are expensive, have detrimental environmental 92 

impact and lead to a final product that contains reaction contaminants and a mixture of 93 

stereoisomers of which the non-natural form typically predominates. The consumers 94 

demand for “non-artificial” colorants has driven the industry to identify and develop 95 

new sources of carotenoids to replace chemical synthesis (6). For example, algal 96 

platforms have been used but logistical problems linked to their slow growth has 97 

inhibited broad implementation (7). Other microbial sources, such as 98 

Xanthophyllomyces dendrorhous (formally Phaffia rodozyma) and Paracoccus 99 

carotinifaciens (Panaferd-AX), have been and are presently used. However, on a 100 

production cost-basis a plant-based source remains the most economically viable (8, 9). 101 

The only plant capable of ketocarotenoid (astaxanthin/phoenicoxanthin) formation is 102 

Adonis aestivalis which is not amenable to agricultural production and contains toxic 103 

alkaloids (10, 11). Thus, a genetic engineering approach of an agricultural crop offers 104 

a viable alternative.  105 

To date numerous proof of concept studies have been reported that have shown how 106 

complex pathway and cellular engineering can deliver dramatic changes in desirable 107 

compounds. However, very few reports exist that actually show the effectiveness of the 108 

approaches under “real-life” scenarios. In the present article, natural variation in 109 

combination with complex engineering has been performed to create a new plant-based 110 



renewable source of ketocarotenoids. The production, technical and economic 111 

feasibility of the material has been demonstrated in comparison to existing products 112 

presently used in the aquaculture industry. The data generated has generic implications 113 

for the production of high-value specialty and bulk chemical production for renewable 114 

sources.  115 

 116 

Results 117 

Generation of a high ketocarotenoids tomato line (ZWRI). A stable ZWRI tomato 118 

line was generated from the genetic crossing of ZW and RI tomato. ZW lines 119 

overexpress the bacterial genes carotene hydroxylase (CrtZ) and carotene ketolase 120 

(CrtW), which are essential for the production of ketocarotenoids from endogenous 121 

plant carotenoids, primarily -carotene (Fig. 1). Interestingly, ZW expressing lines do 122 

not produce high levels of ketocarotenoids (e.g. ZWRIØ ~70 µg/g DW, SI appendix, 123 

Table S1) due to the lack of the biosynthetic precursor -carotene. RI are orange fruited 124 

recombinant inbred lines accumulating high levels of -carotene. They derive from 125 

crossing the cultivated tomato Solanum lycopersicum with the wild S. galapagense 126 

accession (12, 13). Analysis of this collection identified concurrent high -carotene 127 

fruit content with the presence of high comparative expression of the fruit ripening 128 

enhanced lycopene  cyclase (-Cyc).  129 

Two ZW events were crossed with two RI lines. The best combination in terms of 130 

ketocarotenoids levels were selected and kept as a hemizygous state for ZW genes, in 131 

order to prevent detrimental effects on plant vigor, and a homozygous state for the S. 132 

galapagense lycopene cyclase (-Cyc) gene. The greater supply of immediate precursor 133 

(-carotene) in ZWRI overcame biosynthetic limitations to ketocarotenoid formation 134 



and high ketocarotenoid lines containing about 3 mg/g DW in the fruit material (40-135 

fold increase  compared to ZWRIØ) were generated (SI appendix, Table S1).  136 

Biochemical characterization of ZWRI. In addition to the ZWRI line, the double 137 

azygous control (ZWØRIØ), which lost both the CrtZ and CrtW genes (ZW) plus the 138 

S. galapagense -Cyc promoter (RI), and the azygous controls (ZWØRI and ZWRIØ) 139 

were studied. ZWRIØ deep red fruit were defined by a high level of lycopene (77% of 140 

total carotenoids) and a small level of ketocarotenoids (2%) (SI appendix, Table S1). 141 

ZWØRIØ were red tomatoes predominantly accumulating lycopene (68% of total 142 

carotenoids), ZWØRI tomatoes had an orange color representative of their -carotene 143 

content (66%) and the ZWRI tomatoes had a deep red color reflecting the presence of 144 

the ketocarotenoids (87%) (SI appendix, Fig. S1 and Table S1). Chromatographic 145 

analysis of the ZWRI line revealed a complex ketocarotenoid profile (Fig. 2). The main 146 

ketocarotenoids found were phoenicoxanthin (in its free and esterified forms, ~45%) 147 

and canthaxanthin (~35%) (SI appendix, Table S1). The stereoisomer of 148 

phoenicoxanthin was determined as an S configuration (Fig. 2). High resolution 149 

MS/MS was used to identify phoenicoxanthin esters (C14:0 and C16:0). No statistically 150 

significant differences of total fatty acid content of the tomatoes was observed (SI 151 

appendix, Fig. S2). Astaxanthin, phoenicoxanthin and canthaxanthin will be described 152 

in this study as the coloring ketocarotenoids as they all harbour two ketone moieties, 153 

giving them the greatest spectra characteristic (λmax > 470 nm) of all the ketocarotenoids 154 

and therefore the most intense red hue. 155 

 156 

Scalability of the production platform. Following robust glasshouse production of 157 

ketocarotenoids from the ZWRI lines, production scalability was assessed. Cultivation 158 

of over 200 plants under rudimentary polytunnel containment devoid of supplementary 159 



lighting and heating was performed over one growing cycle in the UK with an early 160 

and late season as defined by commercial growers. The composition of the 161 

ketocarotenoid profiles of the ZWRI tomatoes grown in different conditions did not 162 

alter (SI appendix, Table S1). There was a noticeable decrease of total ketocarotenoid 163 

content under polytunnel cultivation compared to greenhouse conditions. However, the 164 

greatest differences were observed between the early and late seasons of the crop. 165 

Despite this change arising from environmental effectors, the levels of ketocarotenoids 166 

in the ripe fruit still reached levels of 2.0 mg/g DW total ketocarotenoids in the late 167 

season crop (SI appendix, Table S1). Over the ZWRI tomatoes growth cycle in the 168 

polytunnel, an average yield of 12 tons per hectare could be extrapolated, which 169 

represents 23 kg of coloring ketocarotenoids (astaxanthin, phoenicoxanthin (free and 170 

esterified) and canthaxanthin) per hectare.  171 

Trout feeding trials. The potential of the ZWRI derived tomato material as feed 172 

supplements for the coloring of rainbow trout (Oncorhynchus mykiss) fillets was 173 

investigated in two geographical locations (Germany and Chile), where different 174 

conditions (fresh and brackish water, respectively) were used to assess the robustness 175 

of the platform. Four to five feed treatments were tested (basic, control tomato, ZWRI 176 

tomato, ZWRI extract and commercial feeds). Their compositions are described in SI 177 

appendix, Fig. S3a and Tables S2 and S3. A standard tomato variety devoid of 178 

ketocarotenoids but containing a similar total carotenoid content compared to ZWRI 179 

tomatoes (2-3 mg/g DW) were used as control tomatoes (SI appendix, Table S1). The 180 

tomato feeds were made using freeze dried tomato powder (SI appendix, Fig. S3b). The 181 

ZWRI extract feed was based on an oily carotenoid extract of the ZWRI tomatoes (SI 182 

appendix, Fig. S3c). The synthetic BioMar supplement and carophyll pink® pigments 183 

were utilized for the commercial feed in the fresh and brackish experiment, 184 



respectively. Levels of total ketocarotenoids in the ZWRI and commercial feeds were 185 

targeted at 75-80 ppm and clarified after feed processing (SI appendix, Table S4). Trout 186 

with a starting weight of 100 g and 40 g were fed with the different treatments for 50 187 

days and up to 80 days under fresh and brackish conditions, respectively. 188 

ZWRI tomatoes color trout fillets. Following the feeding trials, a pink stripe along 189 

the lateral line of the fish (from gills to tail) was observed on the fish fed with the ZWRI 190 

tomato, ZWRI extract and commercial treatments. These same fish harbored colored 191 

fillets with an orange to pink hue whereas the fish fed with the basic and control tomato 192 

feeds had white fillets (Fig. 3a). Fillet color estimation using the DSM SalmoFanTM 193 

lineal showed that ZWRI feeds provided comparable fillet color compared to the 194 

commercial feeds (SI appendix, Fig. S4) despite the commercial feed for the fresh water 195 

trial having a greater initial ketocarotenoid content (SI appendix, Table S4). The 196 

ketocarotenoid composition in the feed and in the fillet remained the same for the 197 

commercial treatments and was predominantly astaxanthin. However, for the ZWRI 198 

treatments, the main change was the loss of the ketocarotenoid esters in the fillet 199 

compared to the feed (Fig. 3b). The ketocarotenoids found in the ZWRI fillets were 200 

phoenicoxanthin, canthaxanthin and some astaxanthin. Most of the endogenous tomato 201 

carotenoids such as lycopene and -carotene were also not found in the trout fillet (SI 202 

appendix, Table S5). The retention of (keto) carotenoid indicates quantitatively how 203 

these compounds were retained in the fillet, compared to their initial amount in the feed 204 

and is represented as a percentage. For the trout trial in fresh water, the retention of the 205 

coloring ketocarotenoids (phoenicoxanthin, canthaxanthin and astaxanthin) in the fillet 206 

was more than 2-fold greater in the ZWRI treatment compared to the commercial 207 

supplement (Table 1). In particular, astaxanthin and phoenicoxanthin had exceptionally 208 

high retention while in the case of the brackish water experiment, the retention of the 209 



coloring ketocarotenoids was similar when comparing the ZWRI tomato, ZWRI extract 210 

and the commercial treatments (Table 1). Carotenoids were also quantified in the feces 211 

of the fresh water trout. Levels of coloring ketocarotenoids were 7 times greater in the 212 

feces of trout fed with the commercial treatment compared to the ZWRI tomato one 213 

and the retention was 1.2-fold higher for the commercial treatment (SI appendix, Table 214 

S6).  215 

Chemical and physiological analysis of the trout showed substantial equivalents. 216 

No significant difference was observed when comparing the weight of the fish across 217 

the experiments (SI appendix, Fig. S5). Levels of carotenoids deposited in the eyes and 218 

livers of the trout obtained in the fresh water trial were minimal (~10 µg/g DW) and 219 

actually lower in ZWRI compared to the commercial treatment (SI appendix, Table S6).  220 

No significant difference was detected in cholesterol contents in the fillets and livers of 221 

the fresh water trout from the various feed conditions (SI appendix, Fig. S6a and S6b). 222 

The retinoid, retinyl acetate and apocarotenal, -apo-14´-carotenal were found at 223 

similar levels in the trout livers from the basic and control tomato conditions. However, 224 

their levels were both increased in livers of trout fed with the ZWRI tomato and 225 

commercial feeds (2.4 to 4-fold and 3.3-fold, respectively). No significant difference in 226 

retinyl acetate and -apo-14´-carotenal contents was noticed between the two latter 227 

treatments (SI appendix, Fig. S7). Fatty acids were also quantified in the different feeds 228 

and fillets from the fresh water trial. No significant difference in total fatty acid content 229 

was observed between the different feeds (SI appendix, Fig. S8a). The main fatty acids 230 

in the feeds were C18:1, C18:2 and C16:0. In the fillets, these fatty acids were still 231 

predominant but C22:6 increased considerably in the fillets compared to the feeds 232 

(~3.3-fold on average). The fatty acid composition of the fillets reflected that of the 233 

feeds used (SI appendix, Fig. S3a and S8b and Table S3b). Moreover, a global analysis 234 



of the non-polar metabolites present in the fillets, derived from the different feed 235 

treatments tested, displayed no discernable clustering/separation following Principal 236 

Component Analysis (PCA) on the basis of the feed supplement used (SI appendix, Fig. 237 

S9). 238 

 239 

Discussion 240 

Over the last decades biotechnology has successfully delivered agronomical input 241 

traits. (14). The consumers demand for improved quality, global food security issues 242 

and the dwindling reserves of fossil fuels, has provided the economic and social impetus 243 

to switch from chemical refining to a bioeconomy based structure. To achieve this goal 244 

the development of output traits represent a major agricultural objective. “Golden Rice” 245 

and high oleic acid soya are two examples of output traits with the potential to make a 246 

difference. In addition to these two examples, numerous proof of concept studies have 247 

been reported that confer enhanced output traits associated with quality. However, only 248 

a few had the opportunity to show technical and production feasibility (15).  249 

In the present study, a new plant-based source of ketocarotenoids has been achieved 250 

and scalability demonstrated in a contained manner under a field-like environment with 251 

low resource input (SI appendix, Table S1). The effectiveness of the tomato based 252 

material or its derived ketocarotenoid extract to act as an aquaculture feed supplement, 253 

responsible for coloring salmonid flesh, has been demonstrated and bench marked 254 

against two existing chemically synthesized products on the market. Over two trials in 255 

different geographical locations, in both brackish and fresh water conditions, the 256 

addition of the tomato material as an admix out performed existing industry products 257 

in terms of ketocarotenoid retention in the trout fillets (Table 1). No adverse effects on 258 

animal husbandry or yield parameters were observed and chemical substantial 259 



equivalence was determined (SI appendix, Fig. S5, S6 and S9). The high ketocarotenoid 260 

tomato extracts also had the potential to color trout fillets (Fig. 3). However, the tomato 261 

matrix seemed to improve the retention of the ketocarotenoids in the fillets by nearly 262 

2-fold (Table 1). Further work is required to ascertain the mechanism underlying this 263 

important phenomena, although we speculate that the lipid microenvironment within 264 

the material may enhance ketocarotenoid absorption into the gastrointestinal tract of the 265 

trout, as fat and oil are known to improve carotenoid solubilization into micelles and 266 

therefore their bioavailability (16). Furthermore, analysis of the carotenoid distribution 267 

in the specific organs/tissues of the trout (fillet, eye and liver) showed that distinct 268 

chemical classes of carotenoids were deposited in a differential manner (SI appendix, 269 

Tables S5 and S6). This phenomena could be due to the different lipid transport 270 

mechanisms that exist but also other factors such as carotenoid concentration and 271 

composition or the presence of other competing molecules. In the present study, 272 

carotenes were exclusively found in the liver while non-esterified xanthophylls were 273 

deposited in the fillet with the exception of echinenone and canthaxanthin that could 274 

also be found in the liver and eye. In a generic manner, these data corroborate previous 275 

reports describing carotenoid distribution in chicken tissues fed on carotenoid enhanced 276 

maize (17). The ketocarotenoids present in the tomato material and derived extracts are 277 

predominantly esterified but those ketocarotenoids present in the flesh of the trout are 278 

non-esterified. This observation supports previous findings where esterified 279 

ketocarotenoids have been shown to be cleaved in the intestine of the trout prior to 280 

deposition in the flesh (18). To date, the literature is inconclusive with regard to the 281 

potential of the esterified carotenoid forms being more bioavailable to fish (19, 20).   282 

The rudimentary approach to formulation used in this study and the results achieved 283 

suggest that further optimization of the process will deliver an improved product 284 



beyond the prototype used to date. The use of an admix also greatly improves the 285 

environmental impact of the process as no organic solvents are required in the down-286 

stream processing or formulation process. In addition to its improved environmental 287 

credentials, the reduction in costs are significant. Although a full Life Cycle Analysis 288 

(LCA) is necessary, our estimates suggest that the keto tomato admix could provide an 289 

approximate 10-fold cost saving, as presently the production cost of the synthetic feed 290 

is in the range of US$1000 to 2000 per kg. Using the data generated in this study, the 291 

production costs for tomato material containing a kilogram of coloring ketocarotenoids 292 

are in the region of US$150. It is important to note that the reason such an admix can 293 

be effective is because of the levels reached in the selected tissues used. In this 294 

particular case, tomato fruit is the ideal sink tissue because it is intrinsically adapted to 295 

isoprenoid production. Although ketocarotenoids have been produced in lettuce (21), 296 

potato (22), maize (23), canola (24) and soybean seeds  (25), the levels are over two 297 

orders of magnitude lower than those achieved in tomato. These low levels make the 298 

vast amounts of seed material required for incorporation into feed formulation 299 

impractical. Presumably, a major reason why these sources are limited is because they 300 

have evolved and been selected for starch and oil accumulation. It is interesting that the 301 

non-endogenous ketocarotenoids produced existed, where chemically possible, in an 302 

esterified form. Precisely how this phenomena arises and their potential to facilitate 303 

sequestration awaits further elucidation. Tomato fruit is also an established food, which 304 

is readily digestible and regarded as Generally Recognized as Safe (GRAS). Non-food 305 

sources such as tobacco do not have these credentials, no sink organs are readily 306 

amenable for production, this means that pleotropic effects are likely to occur in 307 

vegetative tissues when high levels (above 3% dry weight) are reached and substantial 308 

down-stream processes essential. 309 



The present study also shows that a mixture of ketocarotenoids can have the same 310 

coloring potential as astaxanthin solely, the main ketocarotenoid used in aquaculture 311 

feeds. Other natural colorants approved by the European Food Safety Authority, such 312 

as Panaferd-AX® (26) made from Paracoccus carotinifaciens a red carotenoid-rich soil 313 

bacterium, is also constituted of a mixture of carotenoids (27) (astaxanthin (2.2 %), 314 

phoenicoxanthin (1.3 %) and canthaxanthin (0.4 %) besides other carotenoids).  The 315 

main ketocarotenoid in the ZWRI tomato preparation is phoenicoxanthin, although not 316 

abundant in nature, it can be found in mollusks, crustaceans (28), green alga (such as 317 

Haematococcus pluvalis (29) and Chlorococcum (30)) and Adonis flowers (31). The 318 

synthetic astaxanthin preparations used, contain unidentified reaction contaminants and 319 

a mixture of stereoisomers whereas the biosynthetically derived phoenicoxanthin used 320 

in the present study was exclusively present in its biologically active S configuration 321 

(Fig. 2), as found in Adonis aestivalis petals (32). One of the main concerns of novel 322 

foods is traceability. The salmonid fillets are the end-products for the food chain, which 323 

are effectively non-GM products with no foreign DNA. In effect, the approach is 324 

synonymous with the marketing of livestock products fed on GM feedstuffs such as 325 

soya and corn. One advantage of the present phoenicoxanthin product is that it offers 326 

an auditable biochemical marker. Previously, to achieve de-regulation of GM 327 

peppermint varieties unnatural stereoisomers had to be generated to create a traceable 328 

product within the market place (33).  329 

The targeted chemical analysis of the experimental trout tissues has indicated no 330 

significant changes in steady state metabolite levels or composition between the trout 331 

consuming the present commercial product and the experimental tomato derived 332 

ketocarotenoid material. They both prove to enhance the level of one of the natural 333 

forms of vitamin A, retinyl acetate in the trout livers compared to the trout fed with 334 



ketocarotenoid free feeds. This demonstrates that ketocarotenoids can also be used as 335 

vitamin A precursors in agreement with a previous in vitro study on rainbow trout 336 

intestine (34). Although further metabolomic analysis will help to confer the existence 337 

of substantial equivalents, based on the present chemical and physical data acquired the 338 

end-product would appear equivalent to similar products in the market in line with the 339 

US Food and Drug Administration terms. It could then be designated as “Generally 340 

Recognized as Safe” under the Federal Food, Drug, and Cosmetic Act and therefore 341 

avoid pre-market approval in the USA (35).  342 

The approach described in this article demonstrates that using a combination of 343 

technologies presently available, new technology pipelines can be established to deliver 344 

renewable sources of high-value specialty chemicals. In this case, ketocarotenoids have 345 

been chosen and tomato fruit exploited as the production platform. Technical and 346 

production feasibility have been demonstrated. The pipeline developed is scalable, 347 

requires minimal down-stream processing, has improved environmental credentials and 348 

is economically competitive.  349 

 350 

Materials and Methods 351 

Plant material and cultivation. The Moneymaker variety of tomato Solanum 352 

lycopersicum had been previously transformed with the ZW construct, harboring the 353 

bacterial Brevundimonas sp strain SD212 genes carotene hydroxylase (CrtZ) and 354 

carotene ketolase (CrtW) both under the cauliflower mosaic virus 35S constitutive 355 

promoter (36), using the Agrobacterium tumefaciens strain LBA 4404 . The high -356 

carotene line used in this study (RI) derives from the crossing of the cultivated tomato 357 

Solanum lycopersicum (LA4024 in the TGRC database) with the wild S. galapagense 358 

accession (LA0483 in the TGRC database) (12, 13). Two ZW events (10-12 and 10-359 



17) were crossed with two RI lines (RI33 and RI1). The lines were cross pollinated. 360 

The best combination in terms of ketocarotenoids levels were selected (10-12 x RI33). 361 

The ZWRI plants were greenhouse grown (25°C day/15°C night), with supplementary 362 

lighting (16 h light/8 h dark) or under polytunnel containment devoid of supplementary 363 

lighting and heating, over one growing cycle in the UK with an early (June-July, ~ 24°C 364 

day) and late season (August-September, ~ 21°C day). Analyses were made on three 365 

pooled fruits from each studied plant in the greenhouse and on three samples from four 366 

individual batches of several kilos of tomatoes (~ 5 kg) from each season for the large 367 

scale study in the polytunnel. 368 

Extraction and analysis of metabolites.  369 

Carotenoids. Carotenoids were extracted from freeze dried tomatoes, freeze dried trout 370 

parts (fillets, livers and eyes), feces and feeds. Extractions and analyses were carried 371 

out following a protocol previously published (37). A detailed description is shown in 372 

SI appendix, SI text. Fatty acids. Fatty acids were extracted from 20 mg of freeze dried 373 

tomato powder or 50 mg of freeze dried trout fillet powder and feed and analyzed 374 

following the protocol from Menard et al (38). Details are described in SI appendix, SI 375 

text. Retinoids. A retinoid extraction method was adapted from Gesto, Castro, Reis-376 

Henriques and Santos (39). A detailed description is given in SI appendix, SI text. Non-377 

polar compounds (including cholesterol). Non polar compounds extraction from the 378 

trout fillets and livers was performed as described above for the carotenoids. The 379 

extracts were analyzed by gas chromatography-mass spectrometry analysis. A detailed 380 

protocol is given in SI appendix, SI text. Phoenicoxanthin esters fatty acid 381 

determination. The ketocarotenoid esters found in the tomato UPLC chromatogram 382 

profile were individually isolated for further characterization. First, the ketocarotenoid 383 

esters were saponified using the cholesterol esterase from Pseudomonas (Sigma, UK). 384 



Protocol was adapted from Jacobs, Leboeuf, Mccommas and Tauber (40) and Stalberg, 385 

Lindgren, Ek and Hoglund (41) and is described in SI appendix, SI text. The saponified 386 

ketocarotenoids were identified as pheonicoxanthin by comparison of spectral 387 

characteristic and retention time value of the authentic standard. To determine the fatty 388 

acids attached to the phoenicoxanthin esters, the compounds were analysed using mass 389 

spectrometry. Separations were performed by HPLC (Ultimate 3000, Dionex) prior to 390 

on-line MS using a RP C30 3 μm column (150×2.1 mm i.d., YMC) coupled to a 20×4.6 391 

mm C30 guard column. The column temperature was maintained at 30°C. The mobile 392 

phase was comprised of (A) methanol containing 0.1% formic acid (by vol.) and (B) 393 

tert-butyl methyl ether containing 0.1% formic acid (by vol.). These solvents were used 394 

in a gradient mode starting at 100% (A) for 5 min, then stepped to 95% (A) for 4 min, 395 

followed by a linear gradient over 30 min to 25% (A). After this gradient (A) was a step 396 

down to 10% over 10 min. Initial conditions (100% A) were restored for 10 min after 397 

the gradient to re-equilibrate the system. The flow rate used was 0.2 ml/min. The HPLC 398 

system was coupled to maXisTM quadrupole-time-of-flight (QTOF, Bruker, Germany). 399 

The ionisation mode employed was Atmospheric Pressure Chemical Ionisation (APCI) 400 

operating in positive mode. Capillary and APCI vaporisation temperatures were set at 401 

250°C and 450°C respectively and the gas flow (nitrogen) at 4L/min. APCI source 402 

settings were as follows: nebuliser pressure 2.5 bar, corona current 4 μA and a capillary 403 

voltage of 4.5 kV. A full MS scan was performed from 300 to 1500 m/z and MS/MS 404 

spectra were recorded at the isolation width of 0.2 m/z. Identification of the fatty acids 405 

attached to the phoenicoxanthin was done by comparison with the expected mass in the 406 

MS and MS/MS profiles of the phoenicoxanthin esters. Instrument calibration was 407 

performed externally prior to each sequence with APPI/APCI calibrant solution 408 

(Agilent Technologies). Automated post-run internal calibration was performed by 409 



injecting the same APPI/APCI calibrant solution at the end of each sample run via a six 410 

port divert valve equipped with a 20 µL loop. Phoenicoxanthin optical isomerism 411 

analysis. Fractions of phoenicoxanthin were collected and optical isomerism studied 412 

using a liquid chromatography method adapted from Wang, Armstrong and Chang (42), 413 

which is detailed in SI appendix, SI text.   414 

Trout trials. 415 

Feed preparation. A detailed description of the feed preparation is given in SI 416 

appendix, SI text. The composition of the feeds are described in SI appendix, Table S2 417 

& S3.  Figure S3a (SI appendix) gives an overview of the composition of the different 418 

feeds. Feeding trout trial. The experiments were conducted in compliance with the 419 

3Rs (Replacement, Reduction, Refinement) principles and the 2010/63/EU directives. 420 

Ethical approval on animal experiments from the internal RHUL and the DISCO 421 

steering committees were obtained. Fresh water experiment. Rainbow trout 422 

(Oncorhynchus mykiss) about 100g were grown in 400 L tanks filled with 260 L of 423 

fresh water (flow rate:1.2 to 2 L/min, temperature: 11-13°C, oxygen content: 8-10 424 

mg/L). They were fed for seven weeks with the different feed conditions (basic, control 425 

tomato, ZWRI tomato and commercial (BioMar Efico alpha Color 717 42/ 22) feeds), 426 

first with 2% of their weight and afterwards with 1.5%. Each feed was tested in three 427 

tanks containing 10 fish each. Feeds were delivered from the top of the tank at the 428 

surface of the water. Feeds were stored at 4°C in a dark room during the length of the 429 

experiment to prevent carotenoid degradation. Fish were sampled at the end of the 430 

experiment and the fillets, eyes, livers and feces of each trout were collected and kept 431 

at -80°C under N2 atmosphere until analysis. Brackish water experiment. Rainbow 432 

trout (Oncorhynchus mykiss) about 30-40g were grown in 130 L tanks filled with 433 

brackish water (salt concentration: 30 PSU, flow rate: 8 to 9 L/min, temperature: 14-434 



15°C, oxygen content: 7.405 mg/L). Each tank contained 25 fish, twenty of whom were 435 

fed for 60 days and then sampled and the other five fish were fed for an extra 20 days, 436 

so in total 80 days. Each tank corresponded to one feed condition (basic, control tomato, 437 

ZWRI tomato, ZWRI extract and commercial (Carophyll pink®) feeds). Fillets of each 438 

fish were collected for analysis at the end of the experiments and kept at -80°C under 439 

N2 atmosphere until the analyses were performed. Statistical power of the study. A 440 

Post-hoc power analysis was performed to assess the statistical power of the study (SI 441 

appendix, SI text).  Fillet color assessment. Color of the fish fillets were assessed by 442 

three individuals in natural light, right after the slaughtering of the fish, using the DSM 443 

SalmoFan as a reference. The color indices of the fan associated with the different hues 444 

were used to estimate the color. The average of the indices from the three individuals 445 

were calculated and used as a representation of the fillet color of each trout.  446 

Statistical analysis. For the study of plant material, three to five biological replicates 447 

with three technical replicates per biological replicates were analysed for every 448 

experiment. For the study of the trout material, five to fifteen biological replicates with 449 

three technical replicates per biological replicate were investigated for each experiment 450 

unless stated otherwise. IBM SPSS Statistics 21 software was utilized to determine 451 

significant differences between groups. A detailed explanation of the statistical tests 452 

performed is given in SI appendix, SI text. P-values were calculated and represented in 453 

figures as follow: P < 0.05, P < 0.01, and P < 0.001 were indicated by *, **, and ***, 454 

respectively, when appropriate. Table S7 (SI appendix) describes all the statistical tests 455 

performed in this paper and all the p-values obtained with the SPSS software. 456 

Randomization. Randomization technique was used whenever possible (SI appendix, 457 

SI text).  458 

 459 
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 586 

Figure legends 587 

Fig. 1. Representative scheme of the ketocarotenoid pathway introduced in plant. 588 

Enzyme names are as follow: CRTR-B1, plant carotene -hydroxylase 1; CRTW, 589 

bacterial carotene ketolase and CRTZ, bacterial carotene hydroxylase. The purple and 590 



blue shadings depict the position of the newly added functional group (hydroxyl or 591 

ketone, respectively).    592 

Fig. 2. Chromatographic profiles of ZWRI tomato carotenoids and phoenicoxanthin 593 

chirality. The chromatographic carotenoids profile was obtained by UPLC and 594 

recorded at 470 nm. The insert shows that the chiral carbon of the ZWRI 595 

phoenicoxanthin has an S configuration. 596 

Fig. 3. ZWRI tomatoes color trout fillets. (a) Photographs of the trout fed with the basic, 597 

commercial, control tomato, ZWRI tomato and ZWRI extract feeds, taken at the end of 598 

the fresh and brackish water trials (50 and 80 days, respectively). (b) Chromatographic 599 

profiles of carotenoids in the feed and fillet corresponding to the commercial and ZWRI 600 

tomato treatments. 1, astaxanthin; 1#, unknown ketocarotenoid-1; 2, phoenicoxanthin; 601 

3, canthaxanthin; 4, 3´-OH-echinenone; 5, 3-OH-echinenone; 6, echinenone; 7, 602 

phoenicoxanthin-C14:0; 8, adonixanthin-C14:1; 9, phoenicoxanthin-C16:0; 10, 603 

adonixanthin-C16:1; 11, -carotene. 604 
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