78 research outputs found

    Algorithms for reconstruction and analysis of metabolic networks, with an application to Neurospora crassa

    Full text link
    In this work, I have developed optimization-based algorithms to reconstruct and analyze metabolic network models, and I have applied them to the metabolism of the filamentous fungus Neurospora crassa. The developed algorithms are: (1) LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; (2) One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and (3) Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Together, these algorithms comprise Fast Automated Reconstruction of Metabolism (FARM). FARM was applied to reconstruct the first genome-scale model of N. crassa metabolism. This organism has played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. The N. crassa model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, it displays 93% sensitivity and specificity. The model was also used to simulate the biochemical genetics experiments originally performed on N. crassa by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and providing detailed pathway-based mechanistic explanations of the predictions. The model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in N. crassa, and the algorithms will enhance reconstruction and analysis of high-quality genome-scale metabolic models in general

    Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anaplastic astrocytoma (AA) and its more aggressive counterpart, glioblastoma multiforme (GBM), are the most common intrinsic brain tumors in adults and are almost universally fatal. A deeper understanding of the molecular relationship of these tumor types is necessary to derive insights into the diagnosis, prognosis, and treatment of gliomas. Although genomewide profiling of expression levels with microarrays can be used to identify differentially expressed genes between these tumor types, comparative studies so far have resulted in gene lists that show little overlap.</p> <p>Results</p> <p>To achieve a more accurate and stable list of the differentially expressed genes and pathways between primary GBM and AA, we performed a meta-analysis using publicly available genome-scale mRNA data sets. There were four data sets with sufficiently large sample sizes of both GBMs and AAs, all of which coincidentally used human U133 platforms from Affymetrix, allowing for easier and more precise integration of data. After scoring genes and pathways within each data set, we combined the statistics across studies using the nonparametric rank sum method to identify the features that differentiate GBMs and AAs. We found >900 statistically significant probe sets after correction for multiple testing from the >22,000 tested. We also used the rank sum approach to select >20 significant Biocarta pathways after correction for multiple testing out of >175 pathways examined. The most significant pathway was the hypoxia-inducible factor (HIF) pathway. Our analysis suggests that many of the most statistically significant genes work together in a <it>HIF1A</it>/<it>VEGF</it>-regulated network to increase angiogenesis and invasion in GBM when compared to AA.</p> <p>Conclusion</p> <p>We have performed a meta-analysis of genome-scale mRNA expression data for 289 human malignant gliomas and have identified a list of >900 probe sets and >20 pathways that are significantly different between GBM and AA. These feature lists could be utilized to aid in diagnosis, prognosis, and grade reduction of high-grade gliomas and to identify genes that were not previously suspected of playing an important role in glioma biology. More generally, this approach suggests that combined analysis of existing data sets can reveal new insights and that the large amount of publicly available cancer data sets should be further utilized in a similar manner.</p

    Reconstruction and Validation of a Genome-Scale Metabolic Model for the Filamentous Fungus Neurospora crassa Using FARM

    Get PDF
    The filamentous fungus Neurospora crassa played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. Here, we have reconstructed a genome-scale model of its metabolism. This model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. To aid our reconstruction, we developed three optimization-based algorithms, which together comprise Fast Automated Reconstruction of Metabolism (FARM). These algorithms are: LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, the model displays 93% sensitivity and specificity. We also used the model to simulate the biochemical genetics experiments originally performed on Neurospora by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and we provide detailed pathway-based mechanistic explanations of our predictions. Our model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in Neurospora, and we anticipate that our methods will substantially reduce the manual effort required to develop high-quality genome-scale metabolic models for other organisms

    High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control

    Get PDF
    To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR’s mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling

    Dietary betaine supplementation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice

    Get PDF
    Identifying markers of human insulin resistance may permit development of new approaches for treatment and prevention of type 2 diabetes. To this end, we analyzed the fasting plasma metabolome in metabolically characterized human volunteers across a spectrum of insulin resistance. We demonstrate that plasma betaine levels are reduced in insulin-resistant humans and correlate closely with insulin sensitivity. Moreover, betaine administration to mice with diet-induced obesity prevents the development of impaired glucose homeostasis, reduces hepatic lipid accumulation, increases white adipose oxidative capacity, and enhances whole-body energy expenditure. In parallel with these beneficial metabolic effects, betaine supplementation robustly increased hepatic and circulating fibroblast growth factor (Fgf)21 levels. Betaine administration failed to improve glucose homeostasis and liver fat content in Fgf21(-/-) mice, demonstrating that Fgf21 is necessary for betaine's beneficial effects. Together, these data indicate that dietary betaine increases Fgf21 levels to improve metabolic health in mice and suggest that betaine supplementation merits further investigation as a supplement for treatment or prevention of type 2 diabetes in humans

    Unphosphorylated SR-Like Protein Npl3 Stimulates RNA Polymerase II Elongation

    Get PDF
    The production of a functional mRNA is regulated at every step of transcription. An area not well-understood is the transition of RNA polymerase II from elongation to termination. The S. cerevisiae SR-like protein Npl3 functions to negatively regulate transcription termination by antagonizing the binding of polyA/termination proteins to the mRNA. In this study, Npl3 is shown to interact with the CTD and have a direct stimulatory effect on the elongation activity of the polymerase. The interaction is inhibited by phosphorylation of Npl3. In addition, Casein Kinase 2 was found to be required for the phosphorylation of Npl3 and affect its ability to compete against Rna15 (Cleavage Factor I) for binding to polyA signals. Our results suggest that phosphorylation of Npl3 promotes its dissociation from the mRNA/RNAP II, and contributes to the association of the polyA/termination factor Rna15. This work defines a novel role for Npl3 in elongation and its regulation by phosphorylation
    • …
    corecore