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Metabolic modeling predicts metabolite
changes in Mycobacterium tuberculosis
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Abstract

Background: Mycobacterium tuberculosis (MTB) is the causal agent of the disease tuberculosis (TB). Metabolic
adaptations are thought to be critical to the survival of MTB during pathogenesis. Computational tools that can
be used to study MTB metabolism in silico and prioritize resource-intensive experimental work could significantly
accelerate research.

Results: We have developed E-Flux-MFC, an enhancement of our original E-Flux method that enables the prediction
of changes in the production of external and internal metabolites corresponding to gene expression measurements.
We have used this method to simulate the changes in the metabolic state of Mycobacterium tuberculosis (MTB). We
have validated the accuracy of E-Flux-MFC for predicting changes in lipids and metabolites during a hypoxia time
course using previously published metabolomics and transcriptomics data. We have further validated the
accuracy of the method for predicting changes in MTB lipids following the deletion and induction of two
well-studied transcription factors (TFs). We have applied the method to predict the metabolic impact of the
induction of each of the approximately 180 MTB TFs using a previously generated and publically available
expression data set.

Conclusions: E-flux-MFC can be used to study global changes in MTB metabolites from gene expression
data associated with environmental and genetic perturbations. The application of this method to a data set of MTB
TF perturbations provides a resource for studying the large number of TFs whose functions remain unknown. Most TFs
impact metabolites indirectly through the propagation of gene expression changes through the regulatory network
rather than through their direct regulons. E-Flux-MFC is also applicable to any organism for which accurate metabolic
models are available.
Background
Mycobacterium tuberculosis (MTB) is the causal agent of
the disease tuberculosis (TB). With more than 9 million
new cases of active disease and nearly 1.5 million deaths
in 2013, TB is a global health emergency of substantial
proportions [1]. This is amplified by the emergence of
mono-resistant, multiple drug resistant (MDR), exten-
sively drug resistant (XDR) and, most recently, totally drug
resistant (TDR) strains of TB [2–6]. MTB is primarily
transmitted to a new host via inhalation [7]. Within the
lung MTB is phagocytosed by macrophages, which ultim-
ately triggers the formation of a granuloma that contains
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the infected cells. The success of this microbe is due in
part to its ability to survive within the granuloma for long
periods of time (sometimes decades) in an asymptomatic
state [8–10]. One-third of the world’s population is la-
tently infected with MTB [11].
Metabolic adaptations are thought to be critical to

the survival of MTB during pathogenesis. Within the
host, the bacterium must adapt to a range of stresses
including hypoxic [12–24], acidic [25], nitrosative [26],
and redox [27–30] stresses. The response of MTB to
hypoxia in particular is characterized by widespread
metabolic changes including the induction of cholesterol
catabolism (even independent of the presence of choles-
terol), alterations in the metabolism of triacylglycerides
(TAG), alterations in methyl-branched lipids, the rapid
release of free mycolates from trehalose dimycolates
(TDM), and widespread changes in both intracellular and
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extracellular amino acid levels [31]. Restrictions in nu-
trient availability further characterize the host environ-
ment. Within the host, MTB shifts to lipids [32, 33]
and host-derived cholesterol [34–39] as primary nutrient
sources. In addition, several lines of evidence indicate that
an MTB infection results in metabolic reprogramming of
the macrophage host [9, 40, 41]. Although the roles of a
small number of transcriptional regulators have been
well studied in connection to these adaptations [23, 25,
29, 30], the regulatory mechanisms underlying these
changes remain largely unknown. In fact, the potential
regulatory roles of the vast majority of the approxi-
mately 180 predicted transcription factors of MTB re-
main unknown.
Experimental work with MTB is challenging and re-

source intensive. Work must be performed in a special-
ized BSL-3 environment, and fewer genetic tools exist
for MTB relative to other organisms. Experimental work
is also burdened by the extremely slow growth rate of the
organism. MTB has a doubling time of approximately
24 h (as compared to 20 min for E. coli). Experiments with
MTB thus require months to perform. Computational
tools that can be used to study MTB in silico and
prioritize resource-intensive experimental work could thus
significantly accelerate research.
Computational metabolic modeling has been applied

successfully to gain insight into the metabolism of
MTB [42–49]. These efforts are complemented by a
large number of computational studies into the me-
tabolism of other non-pathogenic and pathogenic bac-
terial strains [50–54] as well as human metabolism
[55, 56]. Two widely used models of MTB metabolism
have been published: iNJ661 [42] and GSMN-TB [43, 57].
Further enhancements to these models have addressed
shortcomings in the original model by incorporating new
biochemical knowledge collected about key pathways in
mycobacterial metabolism, allowing researchers to de-
velop metabolic models specific to conditions that are im-
portant for understanding the processes that underlie
virulence [47, 57, 58].
Genome-scale metabolic models capture information

about both experimentally validated and computation-
ally predicted biochemical processes within an organism
in the form of a stoichiometric matrix. These models also
describe the relationship between genes, proteins, and
the enzymes that catalyze each reaction in the organism
[59]. Flux balance analysis (FBA) is a method that is
used to predict network metabolic capabilities at steady
state [60–64]. The main assumption of standard FBA is
the absence of the production or consumption of me-
tabolites, outside of select source or sink metabolites
describing nutrient uptake, waste secretion and biomass
production [59]. Traditional implementations of FBA
typically do not include terms that describe kinetic
parameters, feedback inhibition, or the effects of transcrip-
tional regulation on reaction fluxes. FBA has been used
successfully to predict the metabolic phenotype of gene
knockouts [65–67], to predict growth rates [43, 51, 57,
68–70], and to predict rates of metabolite uptake and
secretion across time using quasi-steady-state modeling
approaches [44, 46, 71, 72].
Many methods have been developed to couple gene

expression state with FBA and have been reviewed in
depth by Lewis et al. [73]. One of the first of these
methods, called rFBA, utilized Boolean constraints in
order to simulate changes in metabolic flux in response
to changes in environmental conditions and regulatory
network perturbations [74]. Other methods, such as
GIMME and iMAT, utilize gene expression microarray
data in order to generate flux solutions that are consist-
ent with a set of gene expression data [50, 75, 76]. Previ-
ously, we described a method called E-Flux that extends
FBA by translating gene expression data into hard con-
straints on the maximum metabolic flux through indi-
vidual reactions [46, 68]. Using E-Flux, we predicted the
impact of drugs on MTB mycolic acid biosynthesis [46].
By integrating expression data from a compendium of
437 microarray experiments corresponding to 75 differ-
ent drugs and culture conditions [77], we correctly pre-
dicted 6 of 7 known inhibitors within this data set [46].
A more recent method, called Probabilistic Regulation of
Metabolism (PROM) [49], translates expression data into
soft constraints on model reaction rates. PROM gener-
ates a flux distribution that is consistent with a set of
gene expression data by minimizing the sum of the vio-
lations on these constraints across all of the reactions in
the model. E-Flux is tailored to predicting terminal, or
sink, metabolites and the PROM method is easily adapt-
able for the study of those same metabolites.
Here, we present E-Flux-MFC, an enhancement of

the original E-Flux method that enables the accurate
prediction of changes in the production of both external
and internal metabolites by integrating gene expression
data. We have validated the accuracy of E-Flux-MFC in
predicting changes in lipids and metabolites during a
hypoxia time course using previously published metabolo-
mics and transcriptomics data [31]. We have further vali-
dated the accuracy of E-Flux-MFC for predicting changes
in MTB lipids following the deletion and induction of
two well-studied transcription factors. We then use our
validated approach to predict the metabolic impact of
the induction of each MTB TF using a previously gen-
erated and publicly available expression data set [31,
78]. These predictions provide a resource for studying
the large number of TFs whose functions remain un-
known, and for identifying TFs that may play direct or
indirect role in regulating the metabolism of com-
pounds of interest.
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Results
Metabolic modeling with E-Flux-MFC
Traditionally, FBA approaches have relied on the steady-
state assumption, which constrains the total change in
concentration of each metabolite to some constant
value. Recent approaches have addressed the problem of
modifying FBA in order to make predictions of changes
in the consumption or production of model metabolites
[71, 72, 79]. Here we have developed a method to pre-
dict changes in the accumulation and utilization of both
extracellular and intracellular metabolites by relaxing
the steady-state constraint for each of the metabolites in
our model and then calculating the difference between
the maximum production flux and the maximum con-
sumption flux in order to calculate a value that we call
maximum flux capacity (MFC).
In order to validate our method, we examined several

published gene expression data sets associated with ex-
perimentally measured changes in metabolite produc-
tion. One data set comprises both gene expression data
and metabolomics data for 69 metabolites in GSMN-TB.
These data were collected during a time course experi-
ment in which Mycobacterium tuberculosis H37Rv was
exposed to hypoxia [31]. This data set thus combines
gene expression and metabolite measurements in condi-
tions relevant to TB pathogenesis. Two additional data
sets are expression datasets associated with knockouts of
the lipid-production associated transcription factors
phoP (Rv0757) [25] and dosR (Rv3133c) [23]. These are
the only two TF deletion studies in MTB, of which we
are aware, that have coupled both transcriptomics and
metabolomics. These data were used to validate the ac-
curacy of our approach in predicting the metabolic im-
pacts of TF deletions.
Importantly, because our method is an adaptation of

FBA, our model generates predictions of metabolite pro-
duction or secretion at a quasi-steady-state that is de-
fined by both the medium constraints placed on the
model and the gene expression data from a particular
time point. Our predictions are not predictions of
changes in concentration over time (which would rely
on precise measurements of initial metabolite measure-
ments and medium uptake and secretion rates), but are
instead qualitative predictions of changes in maximum
production. We compare these predictions against mea-
sured changes in concentration. We propose that de-
creases and increases in maximum flux capacity generally
lead to corresponding decreases and increases in metabol-
ite concentration respectively.

Prediction of changes in metabolite production in a
hypoxic time course
As a first validation of our approach, we sought to predict
changes in lipid production in response to exposure to
hypoxia, which generates a complex regulatory response
that allows MTB to survive within a low-oxygen environ-
ment. In previously published work, MTB was subjected
to a time course of hypoxia during which the relative
levels of transcripts, metabolites, and selected lipids were
measured [31]. These data sets provide a systems-level
compendium of experimental data that describes MTB’s
response to a trigger for entry into dormancy.
For our method we utilized gene expression data col-

lected across a hypoxic time course in order to generate
reaction bounds. In order to model the uncertainty in
our gene expression values and their relationship to
modeling predictions, we utilized a Monte Carlo sam-
pling approach. For each gene at each time point we
added values sampled from a Gaussian distribution cen-
tered on zero with a standard deviation calculated based
on replicate measurements. These samples were added
to the log2 RMA expression values and subsequently
exponentiated for reaction expression calculation. Simi-
lar approaches have been used previously in order to as-
sess the sensitivity of modeling results on the variance of
gene expression data [46, 68].
In Fig. 1a, we show the results for a comparison be-

tween 24 h after the introduction of hypoxia and pre-
hypoxic conditions. We compare log-fold changes in
maximum flux capacity with log-fold changes in metab-
olite abundance for each metabolite that was measured
in this experiment and that was also present in the
MTB metabolic model (Additional file 1: Figure S1 pro-
vides a histogram of MFC values for all metabolites in
our model). In order to assess the relationship between
changes in MFC and changes in concentration, we cal-
culated the Spearman correlation coefficient. For the
hypoxic transition data set, we calculate a value of 0.48
(p = 1.7 × 10−5). Although we do not necessarily expect
a linear relationship between MFC and change in me-
tabolite abundance with our method, we also calculate
a Pearson correlation coefficient of 0.65 (p = 1.1 × 10−9).
Even in the absence of detailed kinetic parameters for
each reaction and the lack of quantitative concentration
measurements, our predictions are positively correlated
with changes in concentration after the induction of
hypoxia. Importantly, our predictions encompass both
intracellular and extracellular metabolites.
Alterations of oxygen tension results in the down-

regulation of the majority MTB genes coupled with the
up-regulation of a smaller subset [31]. In order to assess
whether the correlation between our predictions and
changes in metabolite concentration was due to these
broad patterns of expression changes versus the modula-
tion of specific genes, we performed a permutation ana-
lysis designed to assess the specificity of our results
(Fig. 1b). Similar methods have been described previ-
ously [46, 54, 68]. We performed 1000 permutations by



Fig. 1 Validation of prediction of changes in MTB metabolite production during changes in oxygen. a The predicted change in maximum flux
through each metabolite with a corresponding metabolomics measurement is plotted against the log2 fold change in concentration from just
prior to hypoxia and 1-day post hypoxia. Error bars represent standard deviations of predicted changes calculated across the 1000 samples in the
case of model predictions and across 4 replicates in the case of experimental measurements. MFC values for all model metabolites are provided
in Additional file 1: Figure S1. b One-thousand samples were generated by randomizing gene labels on the time course expression data. The
Spearman correlation coefficient was calculated for each permutation. This distribution is compared with the distribution of coefficients generated
from Monte Carlo samples using the correct gene labels. c Spearman correlation coefficient as a function of the parameter κ for predictions of
change in metabolite concentration from just prior to hypoxia to 1-day post hypoxia. Error bars represent standard deviations of the Spearman
correlation coefficient calculated across 100 samples of the gene expression data. d Changes in the production of several classes of lipids across
the full hypoxic and reaeration time course. Red lines show model predictions of normalized net production for each lipid across the experimental
time course. Black lines show normalized measured changed in abundance across each time course for each measured member of the lipid class.
Error bars represent the standard deviation across samples for predicted production and across experimental replicates for measured abundance
values. e Predicted changes in TAG production (red) and consumption (blue) fluxes. Error bars represent the standard deviation across samples for
predicted production and consumption
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randomizing gene labels then applying the resulting ex-
pression set to our model. We compared the distribution
of Spearman correlation coefficients for the correct gene
labels with predictions generated after randomizing gene
labels. Our model performs significantly better with data
from the true distribution, suggesting that our predic-
tions are due to the specific configuration of gene ex-
pression and the metabolites that we are testing and not
due to a global trend in the expression data.
In addition to random sampling and gene label permuta-

tion analysis, we examined the effect of the parameter κ
(see Equation). κ controls the hardness of the expression-
based reaction bounds. As κ approaches 0, these con-
straints become much softer and have less of an effect on
the final solution. As κ increases, the expression-based
reaction bounds become much harder bounds and thus
place a much greater constraint on the model [49]. Higher
values of κ generate bounds that are similar to the hard re-
action constraints imposed by E-Flux. For each value of κ,
we generated 100 samples of our hypoxic transition gene
expression data. Figure 1c shows the results of this analysis.
We have plotted both the mean and standard deviation of
the Spearman correlation coefficient for the MFC values
that we calculate from these samples for each value of the
parameter. Our sensitivity analysis suggests that past values
of approximately 1.0, there is little variation in the Spear-
man correlation coefficient. Similarly to Chandrasekaran
and Price [49], we find that a value for κ of 1.0 strikes a
balance between hard and soft bounds that yields reason-
able predictions for our analysis of both hypoxic transition
data and transcription factor knockout data.
We further predicted the impact of hypoxia on the

production of key mycobacterial lipids and compared
these changes to measured changes in lipids [31]. In
Fig. 1d we show comparisons between predictions (in
red) and measurements (in black) for several classes of
lipids during both hypoxia (blue) and subsequent
reaeration (yellow). For visualization, production values
are normalized by first subtracting the minimum MFC
value for each species across time, then dividing by the
difference between the maximum and the minimum
MFC values. The measurements of changes in lipids are
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plotted for individual molecular species belonging to
broad classes of lipids. Our results demonstrate qualita-
tive agreement between our predictions of lipid max-
imum net production rates and measured changes in
lipid levels. Assuming no other processes alter lipid
levels, changes in lipid amounts should reflect the time
integral of net production. Qualitatively, this is what we ob-
serve. Decreases in trehalose dimycolates (TDMs) and
phosphatidyl dimycocerosates (PDIMs) during hypoxia and
increases during reaeration are correlated with decreases
and increases in predicted net production, respectively.
Similarly, increases in triacylglycerides (TAGs) during hyp-
oxia and decreases during re-aeration are correlated with
increases and decreases in predicted net production, re-
spectively. Predictions for phosphatidylethanolamine (PE)
have substantially higher variance and we do not predict
significant changes in the production of PEs at either transi-
tion. This is consistent with measured changes in abun-
dance for some members of this class, but not others.
MTB is known to accumulate TAG during hypoxia

and utilize TAG during subsequent re-aeration [80–83].
The consumption of TAG is necessary for the reactiva-
tion of non-replicating Mycobacterium bovis bacillus
Calmette-Guérin (BCG) after exposure to hypoxia [82].
TAGs also play a role in maintaining redox homeostasis
by acting as a source of reducing equivalents [29] and
the modulation of carbon flux away from the TCA cycle
and into the production of TAG (which leads to slowed
growth) has been shown to be an important modulator
of the response of MTB to treatment by antibiotics [84].
In principle, the accumulation of TAG during hypoxia
might be driven by an increase in production, a decrease
in consumption, or both. We examined this by separ-
ately predicting the maximum production and consump-
tion of TAG over the time course (Fig. 2e). The results
suggest that the increase in TAG during hypoxia is
driven largely by a decrease in consumption relative to
production. This is consistent with the overall decrease
in growth during hypoxia-induced dormancy. Moreover,
of the 24 MTB lipase genes predicted to cleave acyl groups
from TAG [81], 18 show repression during hypoxia [31].
Conversely, during re-aeration, both consumption and
production increase, but greater relative consumption is
predicted to drive lower TAG abundance. Consistent with
this, during re-aeration the expression of most lipase
genes returns to baseline, and genes involved in fatty acid
synthase I (FAS1), energy metabolism and β-oxidation
show increased expression [31].

Comparison of E-flux-MFC with E-flux and PROM
As noted above, E-flux-MFC is an extension of E-flux.
E-flux calculates the maximum production of sink me-
tabolites and is thus tailored for external metabolites
that are the product of unidirectional reactions. E-flux-
MFC extends E-flux to internal metabolites by predicting
both the maximum production and consumption of a me-
tabolite to calculate the MFC. To assess the increase in
accuracy attained by this enhancement, we evaluated the
prediction of standard E-flux on the hypoxia data set by
calculating only the maximum production of all metabo-
lites. For this analysis, the Spearman correlation coeffi-
cient was 0.16 (p = 0.09) and the Pearson correlation
coefficients was 0.30 (p = 0.01). As expected, E-flux-MFC
performs considerably better than E-flux.
E-Flux-MFC also borrows from PROM method, which

implements soft reaction bounds. PROM predicts bio-
mass production rather than changes in the production
of individual metabolites. However, PROM can be used
in the same manner as E-flux by treating each metabol-
ite as a single element biomass vector. We implemented
PROM in this way to compare with E-flux-MFC on the
hypoxia data set. For this analysis, the Spearman correl-
ation coefficient was 0.36 (p = 0.001) and the Pearson
correlation coefficient was 0.35 (p = 0.002). E-flux-MFC
thus also performed better than PROM, although PROM
performed better than standard E-flux.
Predicting changes in lipid expression after phoP or dosR
deletions
Our initial validation suggests that our approach is cap-
able of predicting qualitative changes in metabolite levels
based on gene expression changes from wild-type cells.
Toward the goal of supporting experimental design, we
also sought to test the ability of our approach to predict
metabolic changes corresponding to gene deletions.
We first analyzed the knockout of the transcription

factor PhoP [25] (GSE22854). This study compared the
transcriptional responses of the CDC1551 strain of MTB
to that of a phoP transposon mutant. Each strain was
grown to early log phase in standing cultures in 7H9
medium supplemented with OADC (bovine albumin,
dextrose, catalase, and Tween-80). Transcript levels were
measured from three experimental replicates. In separate
experiments, changes in the abundance of several classes
of lipids were measured via thin-layer chromatography
(TLC). PhoP has been shown to regulate cellular aggre-
gation, growth after macrophage infection, and the pro-
duction of lipids important for the structure of the cell
wall, for virulence, and for the production storage lipids
[25, 85–88]. Using the transcriptomic data, we compared
our model predictions with measured lipid changes.
As above, in order to estimate the significance of pre-

dicted changes in MFC, we generated a null model distri-
bution by adding simulated gene expression measurement
noise to the values from the control channel (see
Methods). Predicted changes in MFC were compared to
this distribution to calculate a z-score. Predicted MFC



Fig. 2 Predicted changes in lipid production are deletion or induction of phoP and dosR. a Predicted changes in lipid production in a phoP
knockout strain. E-Flux-MFC correctly predicts the change in production of 7/7 previously-measured changes in lipid production in phoP knockout
mutants [25, 86, 87]. b Predicted changes in lipid production in a dosR knockout strain after the induction of hypoxia (2 h 0.2 % O2) [23]. TAG
production significantly increased, in agreement with expectations based on previous observations. c Predicted changes in lipid production
after the induction of phoP. d Predicted changes in lipid production after the induction of dosR. e Predictions of changes in lipid production
specific to the direct regulon of phoP after induction. Direct regulon from ChIP-Seq data [31]. f Predicted changes in lipid production specific
to the direct regulon of DosR after induction. Abbreviations: TAG triacylglycerols, PDIM phthiocerol dimycocerosates, SL-1 sulfolipids, PAT
polyacyltrehalose, DAT diacyltrehalose, TDM trehalose dimycolates, TMM trehalose monomycolates
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values falling outside of the 95 % null interval of these
MFC values were considered to be significant changes.
In Fig. 2a, we show z-scores of fold changes in pre-

dicted maximum flux capacity (MFC) resulting from
the phoP knockout expression data. We correctly pre-
dict changes in the production of 7 measured lipids
between the wild type strain and the knockout strain.
Our method predicts large increases in the produc-
tion of the storage lipid triacylglycerol (TAG) and
large decreases in the production of virulence lipids
sulfolipid (SL-1) and poly- and di-acyltrehaloses (PAT
and DATs). The method predicts no changes in either
TDMs or trehalose mono-mycolates (TMMs). All
these predictions are in qualitative agreement with ex-
perimental measurements [25, 86, 87].
Of particular interest are the predictions of decreases in

SL-1 and PAT, and DAT production and the increase in
the production of DIM. PhoP directly regulates pks2 and
pks3, genes responsible for the production of sulfolipids
[89] and polyacyltrehalose/diacyltrehalose (PAT/DAT)
[90] respectively. PDIM appears to be specifically required
for growth in the lungs of mice [91] and, along with other
transcription factors, plays a role in the regulation of the
redox state of the cell by acting as a shunt for the incorp-
oration of reducing equivalents and propionyl-CoA [92].
It has also been shown that SL-1 and PDIM production
can be regulated by the availability of their common pre-
cursors methylmalonyl-CoA and propionate [92]. Our
model predictions are consistent with a regulatory role for
PhoP in fine-tuning the flux of these precursors to down-
stream lipid production pathways [93].
We next analyzed the TF DosR. DosR is known to play

an important role in the regulation of hypoxic adaptation
[23]. Park and colleagues knocked out the transcription
DosR and measured gene expression in both the wild type
and knockout strains before and after exposure to hypoxia
[23] (GSE8829). Using E-Flux-MFC, we analyzed the gene
expression data from this experiment. The expression data
consists of two sets of two-color microarrays. One set
compared gene expression between hypoxia and normoxia
for wild type BCG. The other set compared gene expres-
sion between hypoxia and normoxia for ΔdosR. We used
out approach to predict the impact of dosR deletion. To
do so, we first generated MFC predictions for each lipid
class for each condition and strain. We then calculated
the fold change in the MFC values between WT and
ΔdosR in each condition to estimate changes in lipid con-
tent. Significance and z-scores were calculated as above
(see Methods).
In Fig. 2b we plot the predicted changes in selected

lipid classes for ΔdosR relative to WT in the hypoxic
condition. The most significant predicted change is a de-
crease in TAGs, consistent with previous data. DosR has
been shown to directly regulate the TAG production
gene tgs1 (Rv3130c) [23, 83, 94]. A combination of
ChIP-Seq and transcription factor induction experiments
further highlighted the strength of regulation of tgs1 by
DosR [31]. We do not predict significant changes in the
production of other classes of lipids. Although substan-
tial changes in other lipids occur during hypoxia (Fig. 1),
in this experiment, gene expression measurements were
collected after 2 h of exposure to hypoxic conditions.
Thus, these data are representative of the very early re-
sponse to hypoxic conditions. DosR, along with Rv0081,
appears to play a large role in the initial hypoxic response,
after which longer-term adaptations to hypoxic conditions
may be the result of regulation by other transcription
factors [24, 31].
Predicting changes in lipid expression after the induction
of PhoP or DosR
We next sought to simulate the effect on lipid produc-
tion of the induction of PhoP or DosR. For this, we
used previously published measured global expression
data for experiments in which each TF was induced via
the introduction of an exogenous promoter [31]. Each
of these data sets captures both the direct and indirect
effects of TF induction on gene expression. Although
experimental measurements of lipid production after
induction are not available for either TF, one conceiv-
able outcome is that lipid changes would mirror the re-
sults of TF deletion.
This was predicted to be the case for DosR induction,

but interestingly not for PhoP induction (Fig. 2c and d).
For DosR, the most significant prediction of our analysis
is an increase in production of TAGs. This is consistent
with expectation, given the known regulation of tgs1 by
DosR described above. It is also consistent with the ex-
perimentally observed observation that certain strains
(W-Beijing lineage) of MTB with constitutively active
members of the DosR regulon are associated with over-
production of TAG in aerobic culture [94].
We also predict a small but significant decrease in

the production of PDIM (Fig. 2d). These changes are
consistent with decreases in the production of PDIM
observed in lipidomics measurements across a hypoxic
time course [31]. Moreover, ChIP-Seq predicts that sev-
eral genes thought to play a role in PDIM synthesis and
transport–Rv2935, Rv2936, and Rv2939 [95]–are regu-
lated by DosR [31]. All three genes are strongly down-
regulated in the DosR induction dataset. Although the
role of dosR in the regulation of triacylglycerol is well
known, the role of dosR in the regulation of PDIM syn-
thesis is less well studied. It has been observed that PDIM
concentrations in the cell decrease moderately upon the
introduction of hypoxia and then return to normal levels
after re-aeration [31].
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The predicted effects of PhoP induction on lipid pro-
duction, conversely, did not completely mirror the
known effects of phoP deletion (Fig. 2c). Our analysis
predicts an elimination of TAG production and a rever-
sal of SL-1 production, opposite the effect of PhoP de-
letion. However, PAT, DAT, and TDM are predicted to
decrease in their production, as they are in the PhoP
deletion [25, 86, 87].
It is known that the induction of genes can produce

overlapping but not identical phenotypes when com-
pared with gene deletions [96]. One possible explanation
may be the effect of downstream regulatory interactions,
gene expression changes, and feedback associated with
changes in cellular state. To attempt to partially elimin-
ate these indirect effects, and to attempt to tease out
the direct effects from the global effects, we simulated
the impact of both PhoP and DosR induction consider-
ing expression changes for only those genes predicted
to be directly regulated by each TF. We consider a gene
to be directly regulated if a strong binding interaction
was observed in our previously-generated ChIP-seq
data set. For genes not directly regulated by the TF, the
mean gene expression values across replicates for cor-
responding WT samples were used (see Discussion for
limitations of this approach).
Figure 2e and f show the results for this analysis. The

predicted direct effects of DosR induction are qualita-
tively very similar to the predictions of the global ef-
fects (Fig. 2f ). This predicts that the impact of DosR on
changes in these lipids can derive primarily from
changes to the direct regulon of DosR. The predicted
effects of PhoP induction, however, differ from the pre-
dicted global effects for TAG, PAT, and DAT. Induction
of only the PhoP regulon is predicted to decrease pro-
duction of TAGs, mirroring the effect of phoP deletion.
More surprisingly, PAT and DAT production is pre-
dicted to increase, mirroring the effect of PhoP deletion
(for DATs) and the global effects of PhoP induction (for
PAT and DAT). Changes in PAT and DAT are consist-
ent with the predicted regulation by PhoP of the poly-
ketide synthase pks3, known to play a role in the
synthesis of acyltrehaloses [97]. The difference in the
direct effects relative to global effects, however, sug-
gests that the impact of this direct regulation is modu-
lated by other indirect changes in cell state.

Comprehensive prediction of metabolite changes
following induction of all MTB TFs
Bioinformatic analyses suggest that the MTB genome
contains roughly 180 transcription factors [31]. The
functions of the majority of these regulators are un-
known. To begin to gain insight into the functional roles
of unstudied MTB TFs, we have used our approach to
predict the potential metabolic impact of the majority of
MTB TFs. For this, we have used previously published
[31, 78] gene expression data for the induction of each
MTB TF publicly available at TBDB.org. The gene ex-
pression data sets used capture the changes in all genes
following TF induction. Using E-Flux-MFC, for each TF
we have predicted the metabolic impact on seven major
lipid classes (Fig. 3a) and all 737 non-currency metabolites
(Additional file 2) in our metabolic model. Predicted
changes are quantified as z-scores relative to our back-
ground models (see above and Methods), and thus reflect
both the significance and magnitude of the predicted im-
pact. TFs functionally annotated in this manner were also
clustered to identify sets of regulators with potentially
similar functional roles. As in Fig. 2e and f, to filter out in-
direct effects, and thus assess the potential function of the
direct regulon of each TF, we also simulated the impact of
expression changes for the direct regulon of each TF
(Fig. 3b and Additional file 2). Comparing the predictions
for the global effect on lipids in Fig. 3a with the predic-
tions of the direct regulon effects in Fig. 3b suggests that
the majority of TFs may impact lipid production through
indirect effects. A similar pattern is seen when examining
other metabolites. These data suggest that the full func-
tional significance of a regulator may not be well under-
stood by examining only its directly regulated genes.
Instead, the impact of the regulator in the context of the
larger regulatory and metabolic network is essential.

Discussion
We have presented E-Flux-MFC, an enhancement of the
original E-Flux method that enables the prediction of
changes in the production of both external and internal
metabolite corresponding to changes in gene expression
data. We validated our method on a genome-scale meta-
bolic model of MTB in two ways. First, we assessed the
accuracy of E-Flux-MFC in predicting changes in MTB
lipids and metabolites during a time course of hypoxia
using previously published metabolomics and tran-
scriptomics data [31]. Second, we assessed the accuracy
of E-Flux-MFC for predicting changes in MTB lipids
following the deletion and induction of two well-studied
transcription factors. We then use our approach to pro-
vide insight into the potential metabolic functions of the
majority of MTB TFs, most of which are unstudied.
Using our method, we predicted the metabolic impact of
the induction of each TF using a previously generated
and publically available expression data set [31, 78].
These predictions provide a resource for studying the
large number of TFs whose functions remain unknown,
and for identifying TFs that may be associated with me-
tabolites or metabolic pathways of interest.
E-Flux-MFC is an extension of our previously devel-

oped method, E-Flux [46]. Both methods utilize enzyme
gene expression data to constrain the maximum flux



Fig. 3 Predicted impact of the induction of 207 TFs on 7 lipid classes. a Predictions based on global gene expression after TF induction. Left panel
displays results for all TFs clustered by similarity in metabolite profile. Right panels display individual clusters of TFs. Red indicates that TF induction is
predicted to increase metabolite production while blue indicates decreased predicted production. b Predictions based on expression of the direct
regulon of each TF after TF induction. The expression of other genes is set to the mean expression in wild type induction control experiments
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through the corresponding metabolic reactions at steady
state. We and others have previously use E-Flux to ac-
curately predict changes in terminal metabolites [46, 54].
E-Flux treats the production of such metabolites as an
artificial biomass function, and uses FBA with maximum
flux constraints to calculate the maximum value of this
function. In effect, E-Flux predicts the theoretical max-
imum flux into a terminal metabolite if the system ob-
jective was to solely produce this metabolite. Previous
work indicates that changes in this theoretical maximum
flux are well correlated with actual changes in metabolite
concentrations [46, 54].
By focusing on the production of terminal metabolites,

E-flux avoids the need to account for the consumption
of these metabolites. E-Flux-MFC extends this approach
to the prediction of non-terminal metabolites. Net
changes in internal metabolites will reflect the balance
of production and consumption. This in turn will de-
pend on the activities of enzymes in the corresponding
pathways, and the availability of both upstream and
downstream metabolites. We hypothesized that gene ex-
pression state would provide bounds on the maximum
possible production and maximum possible consump-
tion for any given state of internal metabolites. Based on
this, E-Flux-MFC uses gene expression data to calculate
two intermediate values. First, it combines all the path-
ways for the production of a target metabolite into a
synthetic biomass function, and calculates a theoretical
maximum production rate, ignoring consumption. Sec-
ond, it combines all the pathways for the consumption
of a target metabolite into a synthetic biomass function,
and calculates a theoretical maximum consumption
rate, ignoring production. E-Flux-MFC then calculates
the difference between the maximum production flux
and the maximum consumption flux in order to calcu-
late a value that we call maximum flux capacity (MFC).
MFC represents the theoretical maximum production
of a target metabolite if pathways for both production
and consumption were operating at their predicted
maximums. In additions, while E-Flux applied hard
constraints on maximum flux, E-Flux-MFC borrows a
key idea from the PROM method [49] and allows fluxes
that violate the maximum flux constraint, but penalizes
such violations.
Several previous methods have addressed the use of

gene expression data in order to predict changes in me-
tabolite abundance. Differential producibility analysis
(DPA) utilizes FBA to identify genes essential for the pro-
duction of each metabolite, then utilizes changes in gene
expression of essential genes to calculate signals of differ-
ential metabolite production [44]. Reporter metabolite
analysis utilizes metabolic network topology to identify
metabolites associated with genes that have changed in
expression between two conditions [98]. Reporter feature
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analysis, a modification of reporter metabolite analysis,
has been used to predict metabolites affected by transcrip-
tion factor perturbations [99]. Reporter metabolite analysis
takes into consideration only those gene expression values
directly associated with the reactions that produce and
consume a particular metabolite. One of the benefits of
our method is that it takes into consideration the fact that
the limiting reactions in the production pathway of a par-
ticular metabolite may not be the reaction that directly
produces a metabolite. The value of the approach taken
by DPA is that it utilizes relationships between genes and
metabolites that take into account non-direct relationships
between genes and the production of specific metabolites.
However, neither of these approaches predicts the direc-
tion of change in the concentration of a metabolite, one of
the main benefits of E-Flux-MFC.
Another method, termed flux imbalance analysis, uti-

lizes an adaptation of the GIMME algorithm [50] in order
to predict changes in metabolite concentration using gene
expression data [71]. The authors found that their model
predictions provide significant predictive value of the sign
of the change in a metabolite’s concentration. Although
flux imbalance analysis successfully predicts changes in
concentration, it utilizes a method that requires the intro-
duction of a required metabolic functionality (RMF),
which is a minimal user-defined functionality required for
the generation of an expression-constrained flux solution.
E-Flux-MFC does not require the definition of an RMF
(although one may be enforced if it is well-defined for the
condition of interest).
Even if the model accurately predicts the theoretical

maximum production and consumption of a metabolite
at steady state, changes in these maxima need not re-
sult in changes in metabolite levels (if for example pro-
duction, consumption or both were not operating near
the maximal levels). To test the degree to which our
predicted MFCs empirically correlate with actual
changes in metabolite levels, we performed several vali-
dations. First, we assessed the degree to which the
method could predict measured changes in MTB me-
tabolites from corresponding measurements of gene ex-
pression for the same time points. As shown in Fig. 1,
the method with our existing genome-scale model of
MTB metabolism performs with reasonable accuracy.
Predicted changes in MFC for internal metabolites dis-
play a statistically significant positive rank and linear
correlations (Spearman’s ρ =0.48, p = 1.7 × 10−5, Pearson’s
r = 0.64, p = 1.1 × 10−9) with measured changes in relative
metabolite concentrations (Fig. 1b) during the transition
from normoxia to hypoxia. In addition, predicted MFCs
over the full time course display correspondence with ob-
served changes in lipid concentrations (Fig. 1d). Many cell
wall lipids might be considered terminal metabolites from
the perspective of the current metabolic network model
(e.g. phosphatidylethanolamine, for which we are not
aware of any recycling reactions in MTB). TAGs, by
contrast, are actively produced and consumed by MTB
[80–83], and the predictions of TAG MFC are in good
agreement with measured abundance changes.
Second, we assessed the degree to which the method

could predict the metabolic impact of perturbations to
transcription factors, given global gene expression data
following the perturbation. We studied two TFs–DosR
and PhoP–for which such gene expression data are avail-
able [23, 25], and for which information about expected
metabolites changes was also available. For both TFs, E-
Flux-MFC is able to correctly predict all known changes
(or lack of change) in 7 different lipid classes following
TF deletion (Fig. 2a and b).
We further examined the predictions of the method

based on global gene expression following TF induction
[31]. In this case corresponding lipid measurements do
not exist. In these cases, all the results are novel predic-
tions of the model. In some cases, hypotheses could be
generated in light of current knowledge to explain the
predictions after the fact. In particular, while DosR dele-
tion abolishes TAG production in hypoxia, DosR induc-
tion increases TAG production. This is consistent with a
report that strains of the W-Beijing lineage of MTB with
constitutively active members of the DosR regulon are
associated with overproduction of TAG [94]. Also, the
model predicts a weak effect of DosR induction on
PDIM. This hypothesis is consistent with the predicted
regulation by DosR, based on ChIP-Seq [31], of several
genes thought to play a role in PDIM synthesis (Rv2935,
Rv2936, and Rv2939) [95], data that was not used in the
modeling. These explanations, however, remain hypotheses
generated by the model that require follow-up experimental
validation.
The prediction of the impact of PhoP induction was

more unexpected. The predictions were complex and
did not directly mirror the effects of phoP deletion. The
known increase in TAG and decrease in SL-1 in ΔphoP
was either abolished or slightly reversed in the PhoP in-
duction predictions. The decrease in PAT production in
ΔphoP, however, was enhanced in the predictions for
PhoP induction, and DAT was also predicted to decrease
in abundance.
Differences in phenotype between gene deletions and

gene induction are known to occur [96], and this asym-
metry would be expected in many cases given the po-
tential complexity and non-linearity of downstream
regulatory interactions, gene expression changes, and
associated feedback. We explored this by simulating the
impact of both PhoP and DosR induction considering
expression changes for only those genes predicted to be
directly regulated by each TF. For genes not directly
regulated by the TF, the WT gene expression values
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were used. In the case of DosR, both the direct and glo-
bal effects of induction on the lipids analyzed were
similar. The major predicted change was the expected
increase in TAG production. For PhoP, conversely, the
predicted direct effects on lipid production differed
from the predicted global effects. In this case, the pre-
dicted direct effects for acyltrehaloses were substantially
different from the global prediction, while the impact on
TAGs was further magnified. These predictions suggest
that the effect of PhoP modulation on lipid production–
particularly acyltrehaloses–may depend significantly on
the state of other regulators.
We also note that the accuracy of our predictions of

changes in lipid production in the PhoP deletion might be
enhanced by the use of gene expression data collected
from both wild type and ΔphoP mutants in acidic condi-
tions, which induce phoP and its regulation of intracellu-
lar metabolism via the aprABC locus [25]. Nevertheless,
Abramavoitch et al. report a greater than 50 fold reduc-
tion in the expression of the aprABC locus in the phoP
transposon mutant, suggesting that even if phoP is not
maximally induced in the neutral pH wild type condition,
it may still be playing some regulatory role.
Simulating the effect of only the gene expression

changes for the direct regulon of a TF has clear limita-
tions. In particular, the synthetic expression state used
may not be a realizable state of the system (e.g. if the ex-
pression state of the TF regulon imposes hard con-
straints on the expression of other genes). Moreover, the
expression of the genes in a TF regulon may themselves
reflect feedback and feedforward effects of the complete
network. Such effects would not be filtered out with our
approach. Nonetheless, this approach has utility. Predict-
ing the impact of the direct regulation of a TF is concep-
tually akin to describing the aspects of the function of a
TF by considering the functions of the genes in its direct
regulon, a common practice. Although the ultimate
function of a TF necessarily includes its reciprocal effect
on the entire system, the comparison between the global
impact and the direct impact can provide insight into
what changes depend on interactions of the wider system
(e.g. PhoP) and what changes are more independently as-
sociated with the direct targets of the TF (e.g. as predicted
for TAG and DosR).
Several considerations also impact the interpretation

of predictions based on the induction of transcription
factors. A primary concern is that induction could result
in non-specific changes in gene expression that do not
reflect the physiologically relevant function of the in-
duced TF. While this cannot be fully ruled out, we do
not observe an overlap in either gene expression or pre-
dicted metabolic impact across all the data sets that
would imply a specific global effect of the induction
protocol. In addition, the metabolic impact of inducing a
TF may be an incomplete picture of the function of the
TF. Down-regulation or deletion may reveal additional or
contrasting effects of the TF. Both are likely important as-
pects of the TF function. However, to the degree that there
is overlap of modulated metabolites, the predictions pro-
vide insight even if the directions of the effect may be
different between the conditions.
There are several potential reasons for deviations be-

tween our model predictions and measured changes in
metabolite and lipid abundance. One potential source
of error is in our choice of biomass functions. For ex-
ample, we do not enforce any minimal level of biomass
production as with the required metabolic function
used in GIMME or TEAM [50, 71]. Another potential
source of error stems from a lack of complete genetic and
biochemical knowledge of lipid production pathways. Re-
cent efforts at manual re-annotation [100] and condition-
specific high-throughput essentiality studies [38, 101] have
continued to improve the existing model.
We have used our method to provide insight into the

functions of transcriptional regulators in MTB. The MTB
genome contains roughly 180 transcription factors [31],
the functions for the majority of which are unknown.
Using global gene expression data for the induction of
each MTB TF [31, 78] publicly available at TBDB.org, we
applied our approach to associate each TF with the pre-
dicted modulation of 7 major lipid classes (Fig. 3) and 207
metabolites (Additional file 2). Using experimentally de-
termined binding sites derived from ChIP-Seq we have
also simulated the metabolic impact of inducing the direct
regulons of each TF. The comparison of both simulations
provides insight into which functions are mediated by the
TF directly, and which may arise as a result of down-
stream regulatory and metabolic interactions. Comparing
results across regulators and metabolites suggests that in
the majority of cases metabolites are impacted by TFs
through indirect effects. This suggests that the full impact
of a regulator can only be understood in the context of
the larger regulatory and metabolic network.

Conclusions
We have presented E-Flux-MFC, an enhancement of the
original E-Flux method that enables the prediction of
changes in the production of both external and internal
metabolite corresponding to changes in gene expression
data. We validated our method using multiple datasets
combining gene expression and metabolomics measure-
ments. We have used our method to provide insight into
the functions of transcriptional regulators in MTB.
Using global gene expression data for the induction of
each MTB TF we have associated each TF with the po-
tential to modulate each of 7 major lipid classes and
207 metabolites. Using experimentally derived binding
sites derived from ChIP-Seq we have also simulated the
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metabolic impact of inducing the direct regulons of
each TF. The comparison of both simulations suggests
that in the majority of cases metabolites are impacted
by TFs through indirect effects. This indicates that the
full impact of a regulator can only be understood in the
context of the larger regulatory and metabolic network.
Although we have applied E-Flux-MFC to Mycobac-

terium tuberculosis, it is applicable to any organism for
which accurate metabolic models are available. It may
also prove useful for both general and tissue-specific
models of human metabolism. Several efforts have been
undertaken to predict changes in the abundance of
metabolic markers in an effort to understand the mech-
anisms underlying human diseases and to propose
novel diagnostics [102]. The reconstruction of cell-
specific models of human metabolism has benefited
from the integration of gene expression data collected
from those cells. Models describing the metabolism of
hepatocytes [103–105], macrophages [47, 106], and neu-
rons [107] have been published, among others.

Methods
MTB metabolic model
For our analysis, we utilized a modified version of the
GSMN-TB model, which was originally described by
Beste et al. [43]. Our modifications were incorporated in
order to achieve more agreement with the current state of
biochemical knowledge of the pathways responsible for the
production of sulfolipid-1, phthiocerol dimycocerosates, tri-
acylglycerol, diacyltrehalose, and polyacyltrehalose. We vali-
dated the function of our model by measuring the accuracy
of the model for the prediction of gene knockout essential-
ity. We utilized the transposon site hybridization (TraSH)
mutagenesis data set utilized to validate the original
GSMN-TB model [43, 108]. The TraSH data set provides
microarray signal ratios that represent the relative abun-
dances of each mutant in the TraSH library. A lower ratio
indicates that a particular labeled transposon mutant is
present at lower abundance in a culture relative to the
abundance of a genomic DNA sample. In order to assign a
gene as essential, we apply a threshold to this ratio. Micro-
array ratios that fall below this threshold are considered to
be essential.
For each gene in the data set, we measured the growth

rate in the model after the gene had been knocked out.
For several different values of the microarray signal ratio,
we calculated the area under the curve (AUC) for a
receiver-operator characteristic (ROC) curve generated
by calculating true positive and false positive rates across
a range of growth rate thresholds. We performed this
analysis for the original GSMN-TB model and the modi-
fied GSMN-TB model at TraSH thresholds of 0.05, 0.1,
0.2, and 0.5. For the original model, we calculate AUCs
of 0.72, 0.75, 0.76, and 0.74. For the new model, we
calculate AUCs of 0.73, 0.76, 0.77, and 0.73. Thus, the
updated model maintains gene knockout prediction
accuracy while providing updated representations of im-
portant metabolic pathways.

Transcription factor knockout data
Both of the two-color microarray datasets were analyzed
using LIMMA [109] and MAANOVA [110], microarray
analysis libraries for the R statistical programming lan-
guage [111]. LIMMA was used to download datasets from
LIMMA, for background correction using the normexp
model, and for within-array normalization using the print-
old tip loess method. After background correction and
normalization, MAANOVA was used as described previ-
ously [46]. We used MAANOVA here to fit an analysis of
variance model of the form described in Equation.

yijkg ¼ uik þ Gg þ AGð Þjg þ DGð Þig þ ŷkg þ εijkg ð1Þ

As in the model used utilized for analysis of two-color
microarray in the E-Flux framework [46], yijkg denotes
the log-transformed measurement from channel i, chip j,
sample k, and gene g. ŷkg is the value of gene expression
that is specific to the sample k and gene g and εijkg is the
measurement error. The model is fit to minimize the re-
sidual sum of squares. RSS = εijkg

2 is used as the main in-
put for our metabolic modeling method.

E-Flux-MFC
In order to answer questions about the accumulation or
degradation of both intracellular and extracellular me-
tabolites using the metabolic model of MTB, we devel-
oped an extension of the E-Flux and PROM methods
called E-Flux-MFC (E-Flux for maximum flux capacity).
Both E-Flux and PROM are extensions of a method
called flux balance analysis (FBA) [59]. FBA may be de-
scribed as the linear programming problem in Equation.

Maximize ¼ cTv
Subject to Sv ¼ 0
vLB≤v≤vUB

ð2Þ

Where S is a matrix that captures the stoichiometries
of constituent reactions (the stoichiometric matrix), vLB
and vUB are vectors describing the upper and lower
bounds of each reaction in the model, v is the set of
fluxes determined by optimizing the objective function,
and c is an objective function to be maximized and
varies depending on the model and the conditions to be
simulated.
Generally, these bounds are determined by measuring

reaction fluxes through uptake reactions, defining them
from physical parameters (e.g. from diffusion constants),
or calculating them from thermodynamic constraints
[59]. In both E-Flux and E-Flux-MFC, these bounds are
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calculated as a function of the expression of the genes
that are associated with each reaction. The relationships
between genes, proteins, and reactions in the model are
represented by Boolean gene-protein-reaction (GPR)
formulas.
For some reactions, there is a one-to-one correspond-

ence between genes and the gene product catalyzing that
reaction. In these cases, we substitute the gene expres-
sion value directly for the reaction expression value. We
follow an approach similar to that described in several
previous approaches [46, 68, 72, 75]. In order to utilize
these Boolean formulae corresponding to enzyme com-
plexes to calculate a continuous reaction-level expres-
sion from gene expression values we incorporate convert
AND relationships between genes to the minimum ex-
pression value of those two genes. We convert OR rela-
tionships the sum of the expressions of two genes. This
method handles arbitrarily complex isozyme and enzyme
complex relationships. While many factors contribute to
enzyme activity, E-Flux-MFC uses gene expression to
approximate maximum reaction activity.
In order to ensure that MFC values are comparable

between replicates, reaction-level expression values are
normalized within each replicate. For each experiment
and control pair, we normalize by dividing by the max-
imum value within each replicate. This calculation
yields a value that is not scale-dependent and is thus
comparable across replicates. Condition-specific reac-
tion bounds are calculated by multiplying this normal-
ized expression level value by a set of baseline flux
bounds determined using flux variability analysis (FVA)
after the application of experiment-specific medium
constraints, following the approach described Brandes
et al. [68] using a computationally-efficient implemen-
tation [112]. In FVA, two linear programming problems
are solved for each reaction in the model. These prob-
lems are described by Equation.

Maximize=minimize vi
Subject to Sv ¼ 0
Zobj≥Zobjmin

vLB≤v≤vUB

for i ¼ 1…n

ð3Þ

where vi represents each of n reactions in the model,
and vLB and vUB are the lower and upper bounds on
each reaction flux respectively. Here, Zobj is the value of
the model objective function and Zobjmin

is the minimum
value of this objective function to maintain during FVA.
As in PROM, we add a set of constraints on reaction

fluxes that are calculated from gene expression data to
the original constraints of flux balance analysis. This
model is described by the following formulation in
Equation.
Maximize Z ¼ cTv−κ αþ βð Þ
Subject to Sv ¼ 0
vLB≤v≤vUB

v′LB−α≤v≤v
′
UB þ β

ð4Þ

vLB and vUB are the model bounds and vLB
′ and vUB

′ are
the expression-derived flux constraints. Equation mini-
mizes the disagreement between the expression-derived
flux bounds and the calculated reaction flux v. The rela-
tive weighting between the maximization of the objective
function cTv (in this case, the maximization of the produc-
tion or consumption of particular metabolite of interest) is
determined by the parameter κ. The variables α and β are
variables that are chosen by the linear programming solver
and that allow the gene expression-weighted upper and
lower bounds to be violated in order to provide a more
optimal solution (i.e., solutions that are more consistent
with the gene expression data). κ determines the balance
between maximizing the value of the objective function
and minimizing the sum of the violations of the
expression-weighted reaction bounds. Although we con-
strain our model with both FVA-derived bounds and
expression-derived bounds, we have observed that the size
of the violation of the expression-derived bounds is gener-
ally small relative to the original bounds.
In a process that closely resembles flux variability ana-

lysis, we add a reversible demand reaction for each metab-
olite in turn that allows for us to relax the steady-state
assumption for metabolites of interest. By maximizing the
flux through the forward and reverse directions of these
reactions, we generate values that tell us the maximum
production and consumption fluxes for each metabolite in
the model. The difference between these maximum pro-
duction and consumption fluxes is a value that we term
the maximum flux capacity (MFC). Between conditions,
we calculate fold-changes in MFC by subtracting the
experimental value from the control value and dividing by
the absolute value of the control value. These fold-change
values are converted to z-scores by dividing by the stand-
ard deviation of the fold change in MFC across each
replicate in an experiment.

Sampling approach
In analyses utilizing microarray datasets for which repli-
cates were conducted, we utilized expression data values
across those replicates to study the effect of variance in
gene expression on the final predictions of the model.
For each optimization we sample from a Gaussian distri-
bution with mean zero and with a standard deviation
calculated from the standard deviation of each gene at
each time point across all microarray replicates, utilizing
an approach similar to that described in both [46] and
[68]. In order to assess the significance of our predic-
tions, we generate samples of gene expression values
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with this method using the control channel. We gener-
ate a null distribution of maximum flux capacities by
comparing 1000 sets of control channel samples. We
consider a prediction to be significant if it lies outside
the interval containing 95 % of the control values.
Availability of supporting data
The phoP knockout data are available in NCBI’s Gene Ex-
pression Omnibus (GEO) at accession number GSE22854.
The dosR knockout and wild type hypoxic transition data
are available at GEO accession GSE8829. The hypoxic
time course and transcription factor overexpression data
are available at GEO accession GSE43466 and on tbdb.org.
We provide our complete model as an SBML file in Add-
itional file 2. In addition, we have provided in Additional
file 2: Table S1 the binding network used for the transcrip-
tion factor overexpression analysis and the median-scaled
metabolomics.
Additional files

Additional file 1: Figure S1. Distribution of maximum flux capacities
for all model metabolites. Histogram of MFC values for all model
metabolites. Forty percent of the metabolites in our model (305/754)
have an MFC of zero. Three-hundred of these are neither produced nor
consumed in our model, likely due to medium constraints placed on the
model. External hydrogen is not plotted due its large MFC (approximately
48.4). (PNG 39 kb)

Additional file 2: Supplementary data files. Pathways.zip full set
model predictions for all metabolites during transcription factor induction
based on genome-wise expression. Pathways_specific.zip full set model
predictions for all metabolites during transcription factor induction based
on TF regulon specific expression. Model.xml: Genome scale MTB metabolic
model used. Table S1 the binding network used for the transcription factor
overexpression analyses and median-scaled metabolite abundance values
for normoxic and hypoxic conditions. (ZIP 2706 kb)
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