61 research outputs found

    Continuous Hamiltonian dynamics on digital quantum computers without discretization error

    Full text link
    We introduce an algorithm to compute Hamiltonian dynamics on digital quantum computers that requires only a finite circuit depth to reach an arbitrary precision, i.e. achieves zero discretization error with finite depth. This finite number of gates comes at the cost of an attenuation of the measured expectation value by a known amplitude, requiring more shots per circuit. The gate count for simulation up to time tt is O(t2μ2)O(t^2\mu^2) with μ\mu the 11-norm of the Hamiltonian, without dependence on the precision desired on the result, providing a significant improvement over previous algorithms. The only dependence in the norm makes it particularly adapted to non-sparse Hamiltonians. The algorithm generalizes to time-dependent Hamiltonians, appearing for example in adiabatic state preparation. These properties make it particularly suitable for present-day relatively noisy hardware that supports only circuits with moderate depth.Comment: 5 page

    Out-of-equilibrium dynamics of the XY spin chain from form factor expansion

    Full text link
    We consider the XY spin chain with arbitrary time-dependent magnetic field and anisotropy. We argue that a certain subclass of Gaussian states, called Coherent Ensemble (CE) following [1], provides a natural and unified framework for out-of-equilibrium physics in this model. We show that allall correlation functions in the CE can be computed using form factor expansion and expressed in terms of Fredholm determinants. In particular, we present exact out-of-equilibrium expressions in the thermodynamic limit for the previously unknown order parameter one-point function, dynamical two-point function and equal-time three-point function.Comment: 44 page

    Reconstructing particles in jets using set transformer and hypergraph prediction networks

    Full text link
    The task of reconstructing particles from low-level detector response data to predict the set of final state particles in collision events represents a set-to-set prediction task requiring the use of multiple features and their correlations in the input data. We deploy three separate set-to-set neural network architectures to reconstruct particles in events containing a single jet in a fully-simulated calorimeter. Performance is evaluated in terms of particle reconstruction quality, properties regression, and jet-level metrics. The results demonstrate that such a high dimensional end-to-end approach succeeds in surpassing basic parametric approaches in disentangling individual neutral particles inside of jets and optimizing the use of complementary detector information. In particular, the performance comparison favors a novel architecture based on learning hypergraph structure, HGPflow, which benefits from a physically-interpretable approach to particle reconstruction.Comment: 17 pages, 21 figure

    Fanny Copeland and the geographical imagination

    Get PDF
    Raised in Scotland, married and divorced in the English south, an adopted Slovene, Fanny Copeland (1872 – 1970) occupied the intersection of a number of complex spatial and temporal conjunctures. A Slavophile, she played a part in the formation of what subsequently became the Kingdom of Yugoslavia that emerged from the First World War. Living in Ljubljana, she facilitated the first ‘foreign visit’ (in 1932) of the newly formed Le Play Society (a precursor of the Institute of British Geographers) and guided its studies of Solčava (a then ‘remote’ Alpine valley system) which, led by Dudley Stamp and commended by Halford Mackinder, were subsequently hailed as a model for regional studies elsewhere. Arrested by the Gestapo and interned in Italy during the Second World War, she eventually returned to a socialist Yugoslavia, a celebrated figure. An accomplished musician, linguist, and mountaineer, she became an authority on (and populist for) the Julian Alps and was instrumental in the establishment of the Triglav National Park. Copeland’s role as participant observer (and protagonist) enriches our understanding of the particularities of her time and place and illuminates some inter-war relationships within G/geography, inside and outside the academy, suggesting their relative autonomy in the production of geographical knowledge

    Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome

    Full text link

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Coalescence of Black Hole-Neutron Star Binaries

    Full text link

    Z’ boson & contact interaction searches at the LHC

    No full text
    An overview of recently published searches for Z' boson and contact interaction signatures in dilepton and dijet final states with the ATLAS and CMS detectors at the LHC

    Latest search for dilepton resonances and constraints on Dark Matter mediators

    No full text
    The LHC offers the best prospects for direct production of WIMP Dark Matter (DM) and gauge bosons arising from a dark sector beyond the Standard Model (SM). In particular, a neutral Z’_{DM} boson mediating DM-SM interactions is a prime target for resonance searches, and its couplings can thereby be constrained within the broad context of mediator-based simplified DM models. In this poster I introduce the Z’_{DM} phenomenology in the dilepton final state and present the latest bounds on the relevant simplified models imposed by searches for high mass dilepton resonances with the ATLAS detector
    corecore