1,649 research outputs found

    Localized states in strong magnetic field: resonant scattering and the Dicke effect

    Full text link
    We study the energy spectrum of a system of localized states coupled to a 2D electron gas in strong magnetic field. If the energy levels of localized states are close to the electron energy in the plane, the system exhibits a kind of collective behavior analogous to the Dicke effect in optics. The latter manifests itself in ``trapping'' of electronic states by localized states. At the same time, the electronic density of states develops a gap near the resonance. The gap and the trapping of states appear to be complementary and reflect an intimate relation between the resonant scattering and the Dicke effect. We reveal this relation by presenting the exact solution of the problem for the lowest Landau level. In particular, we show that in the absence of disorder the system undergoes a phase transition at some critical concentration of localized states.Comment: 28 pages + 9 fig

    Resonant scattering in a strong magnetic field: exact density of states

    Full text link
    We study the structure of 2D electronic states in a strong magnetic field in the presence of a large number of resonant scatterers. For an electron in the lowest Landau level, we derive the exact density of states by mapping the problem onto a zero-dimensional field-theoretical model. We demonstrate that the interplay between resonant and non-resonant scattering leads to a non-analytic energy dependence of the electron Green function. In particular, for strong resonant scattering the density of states develops a gap in a finite energy interval. The shape of the Landau level is shown to be very sensitive to the distribution of resonant scatterers.Comment: 12 pages + 3 fig

    Strong-field terahertz-optical mixing in excitons

    Get PDF
    Driving a double-quantum-well excitonic intersubband resonance with a terahertz (THz) electric field of frequency \omega_{THz} generated terahertz optical sidebands \omega=\omega_{THz}+\omega_{NIR} on a weak NIR probe. At high THz intensities, the intersubband dipole energy which coupled two excitons was comparable to the THz photon energy. In this strong-field regime the sideband intensity displayed a non-monotonic dependence on the THz field strength. The oscillating refractive index which gives rise to the sidebands may be understood by the formation of Floquet states, which oscillate with the same periodicity as the driving THz field.Comment: 4 pages, 6 figure

    Molecular states observed in a single pair of strongly coupled self-assembled InAs quantum dots

    Full text link
    Molecular states in a SINGLE PAIR of strongly coupled self-assembled InAs quantum dots are investigated using a sub-micron sized single electron transistor containing just a few pairs of coupled InAs dots embedded in a GaAs matrix. We observe a series of well-formed Coulomb diamonds with charging energy of less than 5 meV, which are much smaller than those reported previously. This is because electrons are occupied in molecular states, which are spread over both dots and occupy a large volume. In the measurement of ground and excited state single electron transport spectra with magnetic field, we find that the electrons are sequentially trapped in symmetric and anti-symmetric states. This result is well-explained by numerical calculation using an exact diagonalization method.Comment: PDF file only. 10 pages, 3 figures. In press on Superlattices and Microstructures. Proceedings of 6-th International Conference on New Phenomena in Mesoscopic Systems and 4-th International Conference on Surfaces and Interfaces of Mesoscopic Devices, 1-5 December 2003, Maui, Hawai

    Influence of microwave fields on the electron transport through a quantum dot in the presence of a direct tunneling between leads

    Full text link
    We consider the time-dependent electron transport through a quantum dot coupled to two leads in the presence of the additional over-dot (bridge) tunneling channel. By using the evolution operator method together with the wide-band limit approximation we derived the analytical formulaes for the quantum dot charge and current flowing in the system. The influence of the external microwave field on the time-average quantum dot charge, the current and the derivatives of the average current with respect to the gate and source-drain voltages has been investigated for a wide range of parameters.Comment: 28 Pages, 11 Postscript figure

    Symmetry Constraints and the Electronic Structures of a Quantum Dot with Thirteen Electrons

    Full text link
    The symmetry constraints imposing on the quantum states of a dot with 13 electrons has been investigated. Based on this study, the favorable structures (FSs) of each state has been identified. Numerical calculations have been performed to inspect the role played by the FSs. It was found that, if a first-state has a remarkably competitive FS, this FS would be pursued and the state would be crystal-like and have a specific core-ring structure associated with the FS. The magic numbers are found to be closely related to the FSs.Comment: 13 pages, 5 figure

    Far-infrared absorption in parallel quantum wires with weak tunneling

    Full text link
    We study collective and single-particle intersubband excitations in a system of quantum wires coupled via weak tunneling. For an isolated wire with parabolic confinement, the Kohn's theorem guarantees that the absorption spectrum represents a single sharp peak centered at the frequency given by the bare confining potential. We show that the effect of weak tunneling between two parabolic quantum wires is twofold: (i) additional peaks corresponding to single-particle excitations appear in the absorption spectrum, and (ii) the main absorption peak acquires a depolarization shift. We also show that the interplay between tunneling and weak perpendicular magnetic field drastically enhances the dispersion of single-particle excitations. The latter leads to a strong damping of the intersubband plasmon for magnetic fields exceeding a critical value.Comment: 18 pages + 6 postcript figure

    Metal-Insulator Transition in a Disordered Two-Dimensional Electron Gas in GaAs-AlGaAs at zero Magnetic Field

    Full text link
    A metal-insulator transition in two-dimensional electron gases at B=0 is found in Ga(Al)As heterostructures, where a high density of self-assembled InAs quantum dots is incorporated just 3 nm below the heterointerface. The transition occurs at resistances around h/e^2 and critical carrier densities of 1.2 10^11cm^-2. Effects of electron-electron interactions are expected to be rather weak in our samples, while disorder plays a crucial role.Comment: 4 pages, 3 figures, 21 reference

    Terahertz radiation driven chiral edge currents in graphene

    Get PDF
    We observe photocurrents induced in single layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left- to right-handed. We demonstrate that the photocurrent stems from the sample edges, which reduce the spatial symmetry and result in an asymmetric scattering of carriers driven by the radiation electric field. The developed theory is in a good agreement with the experiment. We show that the edge photocurrents can be applied for determination of the conductivity type and the momentum scattering time of the charge carriers in the graphene edge vicinity.Comment: 4 pages, 4 figure, additional Supplemental Material (3 pages, 1 figure
    • …
    corecore